Skip to main content
Log in

High order finite difference methods on non-uniform meshes for space fractional operators

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In the past decades, the finite difference methods for space fractional operators develop rapidly; to the best of our knowledge, all the existing finite difference schemes, including the first and high order ones, just work on uniform meshes. The nonlocal property of space fractional operator makes it difficult to design the finite difference scheme on non-uniform meshes. This paper provides a basic strategy to derive the first and high order discretization schemes on non-uniform meshes for fractional operators. And the obtained first and second schemes on non-uniform meshes are used to solve space fractional diffusion equations. The error estimates and stability analysis are detailedly performed; and extensive numerical experiments confirm the theoretical analysis or verify the convergence orders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Celik, C., Duman, M.: Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231, 1743–1750 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen, M.H., Deng, W.H.: High order algorithms for the fractional substantial diffusion equation with truncated Lévy flights. SIAM J. Sci. Comput. 37, A890–A917 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, M.H., Deng, W.H.: A second-order numerical method for two-dimensional two-sided space fractional convection diffusion equation. Appl. Math. Model 38, 3244–3259 (2014)

    Article  MathSciNet  Google Scholar 

  4. Chen, M.H., Deng, W.H.: Fourth order accurate scheme for the space fractional diffusion equations. SIAM J. Numer. Anal. 52, 1418–1438 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Evans, L.: Partial differential equations, 2nd edn. American Mathematical Society, New York (2010)

    Google Scholar 

  6. Li, C., Deng, W.H.: Second order WSGD operators II: A new family of difference schemes for space fractional advection diffusion equation (2013). arXiv:1310.7671vl[math.NA]

  7. Lubich, Ch: Discretized fractional calculus. SIAM J. Math. Anal 17, 704–719 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Meerschaert, M., Benson, D., ScheXer, H., Baeumer, B.: Stochastic solution of space −time fractional diffusion equations. Phys. Rev. E 65, 1103–1106 (2002)

    Article  MathSciNet  Google Scholar 

  9. Meerschaert, M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math 172, 65–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ortega, M.: Numerical analysis: a second course. Society for Industrial and Applied Mathematics, Philadelphia (1987)

    Google Scholar 

  12. Podlubny, I.: Fractional differential equations. Academic, San Diego (1999)

    MATH  Google Scholar 

  13. Samko, S., Kilbas, A., Marichev, O.: Fractional integrals and derivatives: theory and applications. Gordon and Breach, Yverdon (1993)

    MATH  Google Scholar 

  14. Sousa, E., Li, C.: A weighted finite difference method for the fractional diffusion equation based on the Riemann-Liouville derivative. Appl. Numer. Math 90, 22–37 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tadjeran, C., Meerschaert, M., Scheffler, H.P.: A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205–213 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tian, W.Y., Zhou, H., Deng, W.H.: A class of second order difference approximations for solving space fractional diffusion Equations. Math. Comp. 84, 1703–1727 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yang, Q., Liu, F., Turner, I.: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model 34, 200–218 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhao, L.J., Deng, W.H.: A series of high order quasi-compact schemes for space fractional diffusion equations based on the superconvergent approximations for fractional derivatives. Numer. Methods Partial Differential Equations 31, 1345–1381 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhou, H., Tian, W.Y., Deng, W.H.: Quasi-compact finite difference schemes for space fractional diffusion equations. J. Sci. Comput. 56, 45–66 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Deng.

Additional information

Communicated by: Zydrunas Gimbutas

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Deng, W. High order finite difference methods on non-uniform meshes for space fractional operators. Adv Comput Math 42, 425–468 (2016). https://doi.org/10.1007/s10444-015-9430-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-015-9430-3

Keywords

Mathematics Subject Classifications (2010)

Navigation