Skip to main content
Log in

Geometric multigrid for an implicit-time immersed boundary method

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The immersed boundary (IB) method is an approach to fluid-structure interaction that uses Lagrangian variables to describe the deformations and resulting forces of the structure and Eulerian variables to describe the motion and forces of the fluid. Explicit time stepping schemes for the IB method require solvers only for Eulerian equations, for which fast Cartesian grid solution methods are available. Such methods are relatively straightforward to develop and are widely used in practice but often require very small time steps to maintain stability. Implicit-time IB methods permit the stable use of large time steps, but efficient implementations of such methods require significantly more complex solvers that effectively treat both Lagrangian and Eulerian variables simultaneously. Several different approaches to solving the coupled Lagrangian-Eulerian equations have been proposed, but a complete understanding of this problem is still emerging. This paper presents a geometric multigrid method for an implicit-time discretization of the IB equations. This multigrid scheme uses a generalization of box relaxation that is shown to handle problems in which the physical stiffness of the structure is very large. Numerical examples are provided to illustrate the effectiveness and efficiency of the algorithms described herein. These tests show that using multigrid as a preconditioner for a Krylov method yields improvements in both robustness and efficiency as compared to using multigrid as a solver. They also demonstrate that with a time step 100–1000 times larger than that permitted by an explicit IB method, the multigrid-preconditioned implicit IB method is approximately 50–200 times more efficient than the explicit method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Boffi, D., Gastaldi, L., Heltai, L., Peskin, C.S.: On the hyper-elastic formulation of the immersed boundary method. Comput. Methods Appl. Mech. Engrg 197(25-28), 2210–2231 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Brandt, A., Dinar, N.: Multi-grid solutions to elliptic flow problems. In: Institute for Computer Applications in Science and Engineering. NASA Langley Research Center, Hampton Va (1979)

  3. Briggs, W., Henson, V., McCormick, S.: A Multigrid Tutorial, 2nd edn. SIAM, Philadelphia (2000). http://lccn.loc.gov/00024103

    Book  Google Scholar 

  4. Ceniceros, H.D., Fisher, J.E.: A fast, robust, and non-stiff immersed boundary method. J. Comput. Phys. 230(12), 5133–5153 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ceniceros, H.D., Fisher, J.E., Roma, A.M.: Efficient solutions to robust, semi-implicit discretizations of the immersed boundary method. J. Comput. Phys. 228(19), 7137–7158 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Elman, H.C.: Multigrid and krylov subspace methods for the discrete stokes equations. Internat. J. Numer. Methods Fluids 22(8), 755–770 (1996)

    Article  MATH  Google Scholar 

  7. Fai, T., Griffith, B., Mori, Y., Peskin, C.: Immersed boundary method for variable viscosity and variable density problems using fast constant-coefficient linear solvers I: Numerical method and results. SIAM J. Sci. Comput. 35(5), B1132–B1161 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gong, Z., Huang, H., Lu, C.: Stability analysis of the immersed boundary method for a two-dimensional membrane with bending rigidity. Commun. Comput. Phys. 3, 704–723 (2008)

    MATH  MathSciNet  Google Scholar 

  9. Griffith, B.E.: IBAMR: An adaptive and distributed-memory parallel implementation of the immersed boundary method. http://ibamr.googlecode.com

  10. Griffith, B.E.: On the volume conservation of the immersed boundary method. Commun. Comput. Phys. 12, 401–432 (2012)

    MathSciNet  Google Scholar 

  11. Griffith, B.E., Hornung, R.D., McQueen, D.M., Peskin, C.S.: An adaptive, formally second order accurate version of the immersed boundary method. J. Comput. Phys. 223(1), 10–49 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Griffith, B.E., Peskin, C.S.: On the order of accuracy of the immersed boundary method: Higher order convergence rates for sufficiently smooth problems. J. Comput. Phys. 208(1), 75–105 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Guy, R.D., Philip, B.: A multigrid method for a model of the implicit immersed boundary equations. Commun. Comput. Phys. 12, 378–400 (2012)

    MathSciNet  Google Scholar 

  14. Hou, T.Y., Shi, Z.: An efficient semi-implicit immersed boundary method for the navier-stokes equations. J. Comput. Phys. 227(20), 8968–8991 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hou, T.Y., Shi, Z.: Removing the stiffness of elastic force from the immersed boundary method for the 2d stokes equations. J. Comput. Phys. 227(21), 9138–9169 (2008). Special Issue Celebrating Tony Leonard’s 70th Birthday

    Article  MATH  MathSciNet  Google Scholar 

  16. Huang, W.X., Sung, H.J.: An immersed boundary method for fluidflexible structure interaction. Comput. Methods Appl. Mech. Eng. 198(3336), 2650–2661 (2009)

    Article  MATH  Google Scholar 

  17. Le, D., White, J., Peraire, J., Lim, K., Khoo, B.: An implicit immersed boundary method for three-dimensional fluid-membrane interactions. J. Comput. Phys. 228(22), 8427–8445 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lee, L., LeVeque, R.J.: An immersed interface method for incompressible navier–stokes equations. SIAM J. Sci. Comput. 25(3), 832–856 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Linden, J., Lonsdale, G., Steckel, B., Stben, K.: Multigrid for the steady-state incompressible navier-stokes equations: A survey. In: Dwoyer, D., Hussaini, M., Voigt, R. (eds.) 11th International Conference on Numerical Methods in Fluid Dynamics, Lecture Notes in Physics, vol. 323, pp. 57–68. Springer Berlin, Heidelberg (1989)

    Google Scholar 

  20. Mayo, A.A., Peskin, C.S.: An implicit numerical method for fluid dynamics problems with immersed elastic boundaries. In: Fluid dynamics in biology (Seattle, WA, 1991), Contemp. Math. 141, 261–277 RI, Amer. Math. Soc., Providence (1993)

  21. Mittal, R., Iaccarino, G.: Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239–261 (2005)

    Article  MathSciNet  Google Scholar 

  22. Mori, Y., Peskin, C.S.: Implicit second-order immersed boundary methods with boundary mass. Comput. Methods Appl. Mech. Eng. 197(25-28), 2049–2067 (2008). Immersed Boundary Method and Its Extensions

    Article  MATH  MathSciNet  Google Scholar 

  23. Newren, E.P., Fogelson, A.L., Guy, R.D., Kirby, R.M.: Unconditionally stable discretizations of the immersed boundary equations. J. Comput. Phys. 222(2), 702–719 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Newren, E.P., Fogelson, A.L., Guy, R.D., Kirby, R.M.: A comparison of implicit solvers for the immersed boundary equations. Comput. Methods Appl. Mech. Eng. 197(25-28), 2290–2304 (2008). Immersed Boundary Method and Its Extensions

    Article  MATH  MathSciNet  Google Scholar 

  25. Niestegge, A., Witsch, K.: Analysis of a multigrid strokes solver. Appl. Math. Comput. 35(3), 291–303 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  26. Oosterlee, C.W., Gaspar, F.J.: Multigrid relaxation methods for systems of saddle point type. Appl. Numer. Math 58(12), 1933–1950 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. Oosterlee, C.W., Washio, T.: An evaluation of parallel multigrid as a solver and a preconditioner for singularly perturbed problems. SIAM. J. Sci. Comput. 19, 87–110 (1998)

    MATH  MathSciNet  Google Scholar 

  28. Peskin, C.S.: Numerical analysis of blood flow in the heart. J. Comput. Phys. 25(3), 220–252 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  29. Peskin, C.S.: The immersed boundary method. Acta Numer. 11(-1), 479–517 (2002)

    MATH  MathSciNet  Google Scholar 

  30. Saad, Y., Schultz, M.H.: Gmres: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM. J. Sci. Stat. Comput. 7(3), 856–869 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  31. Stockie, J.M., Wetton, B.R.: Analysis of stiffness in the immersed boundary method and implications for time-stepping schemes. J. Comput. Phys. 154(1), 41–64 (1999)

    Article  MATH  Google Scholar 

  32. Strychalski, W., Guy, R.D.: Viscoelastic immersed boundary methods for zero reynolds number flow. Commun. Comput. Phys. 12, 462–478 (2012)

    MathSciNet  Google Scholar 

  33. Sussman, M., Almgren, A.S., Bell, J.B., Colella, P., Howell, L.H., Welcome, M.L.: An adaptive level set approach for incompressible two-phase flows. J. Comput. Phys. 148(1), 81–124 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  34. Tatebe, O.: The multigrid preconditioned conjugate gradient method. In: Proceedings of the Sixth Copper Mountain Conference on Multigrid Methods, pp. 621–634 (1993)

  35. Trottenberg, U., Oosterlee, C.W., Schüller, A.: Multigrid. Academic Press, San Diego (2001). http://lccn.loc.gov/00103940

    MATH  Google Scholar 

  36. Tu, C., Peskin, C.S.: Stability and instability in the computation of flows with moving immersed boundaries: A comparison of three methods. SIAM. J. Sci. Stat. Comput. 13(6), 1361–1376 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  37. Vanka, S.P.: Block-implicit multigrid solution of navier-stokes equations in primitive variables. J. Comput. Phys. 65(1), 138 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  38. Wittum, G.: On the convergence of multi-grid methods with transforming smoothers. Numer. Math 57(1), 15 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  39. Wright, G.B., Guy, R.D., Fogelson, A.L.: An efficient and robust method for simulating two-phase gel dynamics. SIAM J. Sci. Comput. 30, 2535–2565 (2008)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Guy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guy, R.D., Philip, B. & Griffith, B.E. Geometric multigrid for an implicit-time immersed boundary method. Adv Comput Math 41, 635–662 (2015). https://doi.org/10.1007/s10444-014-9380-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-014-9380-1

Keywords

Mathematics Subject Classifications (2010)

Navigation