Skip to main content
Log in

Strongly stable bases for adaptively refined multilevel spline spaces

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The problem of constructing a normalized hierarchical basis for adaptively refined spline spaces is addressed. Multilevel representations are defined in terms of a hierarchy of basis functions, reflecting different levels of refinement. When the hierarchical model is constructed by considering an underlying sequence of bases \(\{\Gamma ^{\ell }\}_{\ell =0,\ldots ,N-1}\) with properties analogous to classical tensor-product B-splines, we can define a set of locally supported basis functions that form a partition of unity and possess the property of coefficient preservation, i.e., they preserve the coefficients of functions represented with respect to one of the bases \(\Gamma ^{\ell }\). Our construction relies on a certain truncation procedure, which eliminates the contributions of functions from finer levels in the hierarchy to coarser level ones. Consequently, the support of the original basis functions defined on coarse grids is possibly reduced according to finer levels in the hierarchy. This truncation mechanism not only decreases the overlapping of basis supports, but it also guarantees strong stability of the construction. In addition to presenting the theory for the general framework, we apply it to hierarchically refined tensor-product spline spaces, under certain reasonable assumptions on the given knot configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bazilevs, Y., Calo, V.M., Cottrell, J.A., Evans, J., Hughes, T.J.R., Lipton, S., Scott, M.A., Sederberg, T.W.: Isogeometric analysis using T-splines. Comput. Methods Appl. Mech. Eng. 199, 229–263 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. de Boor, C.: A Practical Guide to Splines. (revised ed.) Springer (2001)

  3. de Boor, C., Höllig, K., Riemenschneider, S.: Box Splines. Springer-Verlag, New York (1993)

    Book  MATH  Google Scholar 

  4. Costantini, P., Lyche, T., Manni, C.: On a class of weak Tchebycheff systems. Numer. Math. 101, 333–354 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dæhlen, M., Lyche, T., Mørken, K., Schneider, R., Seidel, H.P.: Multiresolution analysis over triangles, based on quadratic Hermite interpolation. J. Comput. Appl. Math. 119, 97–114 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dokken, T., Lyche, T., Pettersen, K.F.: Polynomial splines over locally refined box-partitions. Comput. Aided Geom. Des. 30, 331–356 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dörfel, M.R., Jüttler, B., Simeon, B.: Adaptive isogeometric analysis by local h-refinement with T-splines. Comput. Methods Appl. Mech. Eng. 199, 264–275 (2010)

    Article  MATH  Google Scholar 

  8. Farouki, R.T., Goodman, T.N.T.: On the optimal stability of the Bernstein basis. Math. Comput. 65, 1553–1566 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Forsey, D.R., Bartels, R.H.: Hierarchical B-spline refinement. Comput. Graph. 22, 205–212 (1988)

    Article  Google Scholar 

  10. Giannelli, C., Jüttler, B., Speleers, H.: THB-splines: the truncated basis for hierarchical splines. Comput. Aided Geom. Des. 29, 485–498 (2012)

    Article  MATH  Google Scholar 

  11. Greville, T.N.E.: On the normalisation of the B-splines and the location of the nodes for the case of unequally spaced knots. In: Shisha, O. (ed.) Inequalities, pp. 286–290. Academic, New York (1967)

    Google Scholar 

  12. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kleiss, S.K., Jüttler, B., Zulehner, W.: Enhancing isogeometric analysis by a finite element-based local refinement strategy. Comput. Methods Appl. Mech. Eng. 213–216, 168–182 (2012)

    Article  Google Scholar 

  14. Kraft, R.: Adaptive and linearly independent multilevel B-splines. In: Le Méhauté, A., Rabut, C., Schumaker, L.L. (eds.) Surface Fitting and Multiresolution Methods, pp. 209–218. Vanderbilt University Press, Nashville (1997)

    Google Scholar 

  15. Kraft, R.: Adaptive und linear unabhängige Multilevel B-Splines und ihre Anwendungen. Ph.D. thesis, Universität Stuttgart (1998)

  16. Lai, M.J., Schumaker, L.L.: Spline Functions on Triangulations. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  17. Lyche, T., Scherer, K.: On the sup-norm condition number of the multivariate triangular Bernstein basis. In: Nürnberger, G., Schmidt, J.W., Walz, G. (eds.) Multivariate Approximation and Splines, pp. 141–151. Birkhäuser Verlag, Basel (1997)

    Chapter  Google Scholar 

  18. Nguyen-Thanh, N., Nguyen-Xuan, H., Bordas, S.P.A., Rabczuk, T.: Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids. Comput. Methods Appl. Mech. Eng. 200, 1892–1908 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Piegl, L., Tiller, W.: The NURBS Book. Springer, Berlin (1997)

    Book  Google Scholar 

  20. Prautzsch, H.: The location of the control points in the case of box splines. IMA J. Numer. Anal. 6, 43–49 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  21. Prautzsch, H., Boehm, W., Paluszny, M.: Bézier and B-spline Techniques. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  22. Schumaker, L.L.: Spline Functions: Basic Theory, 3rd edn. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  23. Speleers, H., Dierckx, P., Vandewalle, S.: Quasi-hierarchical Powell–Sabin B-splines. Comput. Aided Geom. Des. 26, 174–191 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Speleers, H., Dierckx, P., Vandewalle, S.: On the local approximation power of quasi-hierarchical Powell–Sabin splines. In: Dæhlen, M., Floater, M., Lyche, T., Merrien, J., Mørken, K., Schumaker, L. (eds.) Mathematical Methods for Curves and Surfaces, pp. 419–433. Lecture Notes in Computer Science 5862, (2010)

  25. Vuong, A.V., Giannelli, C., Jüttler, B., Simeon, B.: A hierarchical approach to adaptive local refinement in isogeometric analysis. Comput. Methods Appl. Mech. Eng. 200, 3554–3567 (2011)

    Article  MATH  Google Scholar 

  26. Wu, M., Xu, J., Wang, R., Yang, Z.: Hierarchical bases of spline spaces with highest order smoothness over hierarchical T-subdivisions. Comput. Aided Geom. Des. 29, 499–509 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  27. Yvart, A., Hahmann, S.: Hierarchical triangular splines. ACM Trans. Graph. 24, 1374–1391 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Speleers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giannelli, C., Jüttler, B. & Speleers, H. Strongly stable bases for adaptively refined multilevel spline spaces. Adv Comput Math 40, 459–490 (2014). https://doi.org/10.1007/s10444-013-9315-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-013-9315-2

Keywords

Mathematics Subject Classifications (2010)

Navigation