Skip to main content
Log in

L p error estimates for approximation by Sobolev splines and Wendland functions on ℝd

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

It is known that a Green’s function-type condition may be used to derive rates for approximation by radial basis functions (RBFs). In this paper, we introduce a method for obtaining rates for approximation by functions which can be convolved with a finite Borel measure to form a Green’s function. Following a description of the method, rates will be found for two classes of RBFs. Specifically, rates will be found for the Sobolev splines, which are Green’s functions, and the perturbation technique will then be employed to determine rates for approximation by Wendland functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronszajn, N., Smith, K.T.: Theory of Bessel potentials. I. Ann. Inst. Fourier 11, 385–475 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aronszajn, N., Szeptyki P.: On spaces of potentials connected with L p classes. Ann. Inst. Fourier 13(2), 211–306 (1963)

    Article  MATH  Google Scholar 

  3. Benedetto, J.J.: Spectral Synthesis. Academic, London (1975)

    Book  Google Scholar 

  4. Buchtala, O., Klimek, M., Sick, B.: Evolutionary optimization of radial basis function classifiers for data mining applications. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 35(5), 928–947 (2005)

    Article  Google Scholar 

  5. DeVore, R., Ron, A.: Approximation using scattered shifts of a multivariate function. Trans. Am. Math. Soc. 362(12), 6205–6229 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Diago, L.A., Moreno, E.: Evaluation of geometric complementarity between molecular surfaces using compactly supported radial basis functions. IEEE/ACM Trans. Comput. Biol. Bioinf. 6(4), 689–694 (2009)

    Article  Google Scholar 

  7. Faul, A.C., Goodsell, G., Powell, M.J.D.: A Krylov subspace algorithm for multiquadric interpolation in many dimensions. IMA J. Numer. Anal. 25(1), 1–24 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fisch, D., Hofmann, A., Sick, B.: On the versatility of radial basis function neural networks: a case study in the field of intrusion detection. Inf. Sci. 180(12), 2421–2439 (2010)

    Article  Google Scholar 

  9. Flyer, N., Wright, G.: Transport schemes on a sphere using radial basis functions. J. Comp. Physiol. 226, 1059–1084 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Flyer, N., Wright, G.: A radial basis function method for shallow water equations on a sphere. Proc. R. Soc. Lond., A Math. Phys. Eng. Sci. 465(2106), 1946–1976 (2009)

    Article  MathSciNet  Google Scholar 

  11. Folland, G.B.: Fourier Analysis and Its Applications. Brooks/Cole, Pacific Grove, CA (1992)

    MATH  Google Scholar 

  12. Folland, G.B.: Real Analysis. Modern Techniques and their Applications, 2nd edn. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York (1999)

    MATH  Google Scholar 

  13. Gelas, A., Bernard, O., Friboulet, D., Prost, R.: Compactly supported radial basis functions based collocation method for level-set evolution in image segmentation. IEEE Trans. Image Process. 16, 1873–1887 (2007)

    Article  MathSciNet  Google Scholar 

  14. Hangelbroek, T.: Approximation by scattered translates of the fundamental solution of the biharmonic equation on bounded domains. PhD Thesis. The University of Wisconsin, Madison (2007)

  15. Hangelbroek, T.: Error estimates for thin plate spline approximation in the disk. Constr. Approx. 28(1), 27–59 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hofmann, T., Schölkopf, B., Smola, A.J.: Kernel methods in machine learning. Ann. Stat. 36(3), 1171–1220 (2008)

    Article  MATH  Google Scholar 

  17. Livne, O.E., Wright, G.B.: Fast multilevel evaluation of smooth radial basis function expansions. Electron. Trans. Numer. Anal. 23, 263–287 (2006)

    MathSciNet  MATH  Google Scholar 

  18. Mhaskar, H.N., Narcowich, F.J., Prestin, J., Ward, J.D.: L p Bernstein estimates and approximation by spherical basis functions. Math. Comput. 79, 1647–1679 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton, NJ (1970)

    MATH  Google Scholar 

  20. Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge, UK (2005)

    MATH  Google Scholar 

  21. Yokota, R., Barba, L.A., Knepley, M.G.: PetRBF-a parallel \(\mathcal{O}(N)\) algorithm for radial basis function interpolation with Gaussians. Comput. Methods Appl. Mech. Eng. 199(25–28), 1793–1804 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Paul Ward.

Additional information

Communicated by R. Schaback.

This paper contains work from the author’s dissertation written under the supervision of Professors F. J. Narcowich and J. D. Ward at Texas A&M University. This research was supported by grant DMS-0807033 from the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ward, J.P. L p error estimates for approximation by Sobolev splines and Wendland functions on ℝd . Adv Comput Math 38, 873–889 (2013). https://doi.org/10.1007/s10444-011-9263-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-011-9263-7

Keywords

Mathematics Subject Classifications (2010)

Navigation