Skip to main content
Log in

Domain decomposition methods with graph cuts algorithms for total variation minimization

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Recently, graph cuts algorithms have been used to solve variational image restoration problems, especially for noise removal and segmentation. Compared to time-marching PDE methods, graph cuts based methods are more efficient and able to obtain the global minimizer. However, for high resolution and large-scale images, the cost of both memory and computational time increases dramatically. In this paper, we combine the domain decomposition method and the graph cuts algorithm for solving the total variation minimizations with L 1 and L 2 fidelity term. Numerous numerical experiments on large-scale data demonstrate the proposed algorithm yield good results in terms of computational time and memory usage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alliney, S.: Digital filters as absolute norm regularizers. IEEE Trans. Signal Process. 40(6), 1548–1562 (1992)

    Article  MATH  Google Scholar 

  2. Alliney, S.: A property of the minimum vectors of a regularizing functional defined by means of the absolute norm. IEEE Trans. Signal Process. 45(4), 913–917 (1997)

    Article  Google Scholar 

  3. Alliney, S., Ruzinsky, S.: An algorithm for the minimization of mixed l 1 and l 2 norms with application to Bayesian estimation. IEEE Trans. Signal Process. 42(3), 618–627 (1994)

    Article  Google Scholar 

  4. Boykov, Y., Kolmogorov, V.: Computing geodesics and minimal surfaces via graph cuts. In: IEEE International Conference on Computer Vision, Nice, France, vol I, pp. 26–33 (2003)

  5. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137 (2004)

    Article  Google Scholar 

  6. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  7. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1), 89–97 (2004)

    Article  MathSciNet  Google Scholar 

  8. Chambolle, A.: Total variation minimization and a class of binary MRF models. Energy minimization methods in computer vision and pattern recognition: 5th international workshop, EMMCVPR 2005. Lect. Notes Comput. Sci. 3757, 136–152 (2005)

    Article  Google Scholar 

  9. Chan, T., Esedoglu, S.: Aspects of total variation regularized l 1 function approximation. SIAM J. Appl. Math. 65(5), 1817–1837 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chan, T., Mathew, T.: Domain decomposition algorithms. Acta Numer. 3, 61–143 (1994)

    Article  MathSciNet  Google Scholar 

  11. Chan, T., Shen, J.: Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods. Society for Industrial and Applied Mathematics (2005)

  12. Chan, T., Shen, J., Vese, L.: Variational PDE models in image processing. Not. Am. Math. Soc. 50(1), 14–26 (2003)

    MathSciNet  MATH  Google Scholar 

  13. Chen, K., Tai, X.: A nonlinear multigrid method for total variation minimization from image restoration. J. Sci. Comput. 33(2), 115–138 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Darbon, J.: Total variation minimization with l 1 data fidelity as a contrast invariant filter. In: Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis (ISPA 2005), Zagreb, Croatia (2005)

  15. Darbon, J., Sigelle, M.: Image restoration with discrete constrained total variation part I: fast and exact optimization. J. Math. Imaging Vis. 26(3), 261–276 (2006)

    Article  MathSciNet  Google Scholar 

  16. Darbon, J., Sigelle, M.: Image restoration with discrete constrained total variation part II: levelable functions, convex priors and non-convex cases. J. Math. Imaging Vis. 26(3), 277–291 (2006)

    Article  MathSciNet  Google Scholar 

  17. Dong, Y., Hintermúller, M., Neri, M.: A primal-dual method for L1 TV image denoising. SIAM J. Imaging Sci. 2, 577–613 (2009)

    Article  Google Scholar 

  18. Ford, L., Fulkerson, D.: Flows in Networks. Princeton University Press (1962)

  19. Gallo, G., Grigoriadis, M., Tarjan, R.: A fast parametric maximum flow algorithm and applications. SIAM J. Comput. 18(1), 30–55 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Goldberg, A., Tarjan, R.: A new approach to the maximum-flow problem. J. Assoc. Comput. Mach. (JACM) 35(4), 921–940 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Goldfarb, D., Yin, W.: Parametric maximum flow algorithms for fast total variation minimization. SIAM J. Sci. Comput. 31(5), 3712–3743 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Goldstein, T., Osher, S.: The split Bregman method for L1 regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Greig, D., Porteous, B., Seheult, A.: Exact maximum a posteriori estimation for binary images. J. R. Stat. Soc., B (Methodological) 51(2), 271–279 (1989)

    Google Scholar 

  24. Guichard, F., Morel, J.: Mathematical morphology “almost everywhere”. In: Proceedings of ISMM, Csiro Publishing, pp. 293–303 (2002)

  25. Ishikawa, H.: Exact optimization for Markov random fields with convex priors. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1333–1336 (2003)

    Article  Google Scholar 

  26. Jia, R., Zhao, H.: A fast algorithm for the total variation model of image denoising. Adv. Comput. Math. 33(2), 231–241 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 147–159 (2004)

    Article  Google Scholar 

  28. Nikolova, M.: A variational approach to remove outliers and impulse noise. J. Math. Imaging Vis. 20(1), 99–120 (2004)

    Article  MathSciNet  Google Scholar 

  29. Osher, S., Sole, A., Vese, L.: Image decomposition and restoration using total variation minimization and the h  − 1 norm. Multiscale Model. Simul. 1(3), 349–370 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul. 4(2), 460–489 (2006)

    Article  MathSciNet  Google Scholar 

  31. Pollak, I., Willsky, A., Huang, Y.: Nonlinear evolution equations as fast and exact solvers of estimation problems. IEEE Trans. Signal Process. 53(2), 484–498 (2005)

    Article  MathSciNet  Google Scholar 

  32. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)

    Article  MATH  Google Scholar 

  33. Rudin, L., Osher, S., Inc, C., Santa Monica, C.: Total variation based image restoration with free local constraints. In: IEEE International Conference Image Processing, Austin, TX, pp. 31–35 (1994)

  34. Sauer, K., Bouman, C.: Bayesian estimation of transmission tomograms using segmentation based optimization. IEEE Trans. Nucl. Sci. 39(4), 1144–1152 (1992)

    Article  Google Scholar 

  35. Savage, J., Chen, K.: An improved and accelerated non-linear multigrid method for total-variation denoising. Int. J. Comput. Math. 82(8), 1001–1015 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tai, X.: Parallel function decomposition and space decomposition methods: Part II. Space decomposition. Beijing Math. 1, 135–152 (1995)

    Google Scholar 

  37. Tai, X.: Rate of convergence for some constraint decomposition methods for nonlinear variational inequalities. Numer. Math. 93(4), 755–786 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tai, X., Espedal, M.: Rate of convergence of some space decomposition methods for linear and nonlinear problems. SIAM J. Numer. Anal. 35(4), 1558–1570 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tai, X., Wu, C.: Augmented lagrangian method, dual methods and split bregman iteration for ROF model. In: Scale Space and Variational Methods in Computer Vision, Second International Conference, pp. 502–513. Springer (2009)

  40. Tai, X., Xu, J.: Global and uniform convergence of subspace correction methods for some convex optimization problems. Math. Comput. 71(237), 105–124 (2002)

    MathSciNet  MATH  Google Scholar 

  41. Vogel, C., Oman, M.: Iterative methods for total variation denoising. SIAM J. Sci. Comput. 17(1), 227–238 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wen, Y., Ng, M., Huang, Y.: Efficient total variation minimization methods for color image restoration. IEEE Trans. Image Process. 17(11), 2081–2088 (2008)

    Article  MathSciNet  Google Scholar 

  43. Wu, C., Tai, X.: Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models. SIAM J. Imaging Sci. 3, 300–339 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wu, C., Zhang, J., Tai, X.: Augmented Lagrangian method for total variation restoration with non-quadratic fidelity. UCLA CAM Report 09–82, Department of Mathematics, UCLA, Los Angeles, CA, CAM Report (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuping Duan.

Additional information

Communicated by Yuesheng Xu and Hongqi Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, Y., Tai, XC. Domain decomposition methods with graph cuts algorithms for total variation minimization. Adv Comput Math 36, 175–199 (2012). https://doi.org/10.1007/s10444-011-9213-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-011-9213-4

Keywords

Mathematics Subject Classifications (2010)

Navigation