Skip to main content
Log in

Surface Modifications of Carbon Fiber Electrodes for Structural Supercapacitors

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Structural electrodes for supercapacitors based on woven carbon fiber were made from different surface modification approaches, such as spray coating with carbon nanoparticles (graphene nanoplatelets and multiwall carbon nanotubes, GNP and MWCNT, respectively) and direct synthesis of carbon aerogel (CAG) on the surface of the carbon fabric. Suitability of the different modification techniques was stablished based on the results from cyclic voltammetry and single fiber tensile test. Highest capacitance was achieved by the synthesis of CAG although mechanical properties were negatively affected. These treatments produced a good combination of mechanical and electrochemical properties, which suggests these electrodes are suitable for multifunctional applications. In particular, capacitance was improved by increasing the surface area of commercial carbon fiber fabric while keeping its mechanical properties. The best combination of properties was achieved by deposition of GNP by spray coating. Mechanical properties kept unaffected and capacitance was increased by an order of magnitude compared with the pristine carbon fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. Park, S.-J., Seo, M.-K.: Carbon Fiber-Reinforced Polymer Composites: Preparation, Properties, and Applications, in: Polym. Compos., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp. 135–183 (2012). https://doi.org/10.1002/9783527645213.ch5.

  2. Sairajan, K.K., Aglietti, G.S., Mani, K.M.: A review of multifunctional structure technology for aerospace applications. Acta Astronaut. 120, 30–42 (2016). https://doi.org/10.1016/j.actaastro.2015.11.024

    Article  Google Scholar 

  3. Mallick, P.K.: Fiber-Reinforced Composites. CRC Press (2007). https://doi.org/10.1201/9781420005981

    Article  Google Scholar 

  4. Forintos, N., Czigany, T.: Multifunctional application of carbon fiber reinforced polymer composites: Electrical properties of the reinforcing carbon fibers – A short review. Compos. Part B Eng. 162, 331–343 (2019). https://doi.org/10.1016/j.compositesb.2018.10.098

    Article  CAS  Google Scholar 

  5. González, C., Vilatela, J.J., Molina-Aldareguía, J.M., Lopes, C.S., LLorca, J.: Structural composites for multifunctional applications: Current challenges and future trends. Prog. Mater. Sci. 89 194–251 (2017) . https://doi.org/10.1016/j.pmatsci.2017.04.005

  6. Gibson, R.F.: A review of recent research on mechanics of multifunctional composite materials and structures. Compos. Struct. 92, 2793–2810 (2010). https://doi.org/10.1016/j.compstruct.2010.05.003

    Article  Google Scholar 

  7. Conway, B.E.: Electrochemical Supercapacitors, Springer US, Boston, MA, (1999). https://doi.org/10.1007/978-1-4757-3058-6

  8. Shirshova, N., Qian, H., Shaffer, M.S.P., Steinke, J.H.G., Greenhalgh, E.S., Curtis, P.T., Kucernak, A., Bismarck, A.: Structural composite supercapacitors. Compos. Part A Appl. Sci. Manuf. 46, 96–107 (2013). https://doi.org/10.1016/j.compositesa.2012.10.007

    Article  CAS  Google Scholar 

  9. Qian, H., Diao, H., Shirshova, N., Greenhalgh, E.S., Steinke, J.G.H., Shaffer, M.S.P., Bismarck, A.: Activation of structural carbon fibres for potential applications in multifunctional structural supercapacitors. J. Colloid Interface Sci. 395, 241–248 (2013). https://doi.org/10.1016/j.jcis.2012.12.015

    Article  CAS  Google Scholar 

  10. Shirshova, N., Qian, H., Houllé, M., Steinke, J.H.G., Kucernak, A.R.J., Fontana, Q.P.V., Greenhalgh, E.S., Bismarck, A., Shaffer, M.S.P.: Multifunctional structural energy storage composite supercapacitors. Faraday Discuss. 172, 81–103 (2014). https://doi.org/10.1039/C4FD00055B

    Article  CAS  Google Scholar 

  11. Qian, H., Greenhalgh, E.S., Shaffer, M.S.P., Bismarck, A.: Carbon nanotube-based hierarchical composites: A review. J. Mater. Chem. 20, 4751–4762 (2010). https://doi.org/10.1039/C000041H

    Article  CAS  Google Scholar 

  12. Karger-Kocsis, J., Mahmood, H., Pegoretti, A.: All-carbon multi-scale and hierarchical fibers and related structural composites: A review. Compos. Sci. Tech. 186, 107932 (2020). https://doi.org/10.1016/j.compscitech.2019.107932

    Article  CAS  Google Scholar 

  13. Lavagna, L., Nisticò, R., Musso, S., Pavese, M.: Functionalization as a way to enhance dispersion of carbon nanotubes in matrices: a review. Mater. Today Chem. 20, 100477 (2021). https://doi.org/10.1016/j.mtchem.2021.100477

    Article  CAS  Google Scholar 

  14. Lavagna, L., Massella, D., Pantano, M.F., Bosia, F., Pugno, N.M., Pavese, M.: Grafting carbon nanotubes onto carbon fibres doubles their effective strength and the toughness of the composite. Compos. Sci. Tech. 166, 140–149 (2018). https://doi.org/10.1016/j.compscitech.2018.03.015

    Article  CAS  Google Scholar 

  15. Lavagna, L., Massella, D., Pavese, M.: Preparation of hierarchical material by chemical grafting of carbon nanotubes onto carbon fibers. Diam. Relat. Mater. 80, 118–124 (2017). https://doi.org/10.1016/j.diamond.2017.10.013

    Article  CAS  Google Scholar 

  16. Qian, H., Kucernak, A.R., Greenhalgh, E.S., Bismarck, A., Shaffer, M.S.P.: Multifunctional Structural Supercapacitor Composites Based on Carbon Aerogel Modified High Performance Carbon Fiber Fabric. ACS Appl. Mater. Interfaces. 5, 6113–6122 (2013). https://doi.org/10.1021/am400947j

    Article  CAS  Google Scholar 

  17. Deka, B.K., Hazarika, A., Kim, J., Park, Y.-B., Park, H.W.: Multifunctional CuO nanowire embodied structural supercapacitor based on woven carbon fiber/ionic liquid–polyester resin. Compos. Part A Appl. Sci. Manuf. 87, 256–262 (2016). https://doi.org/10.1016/j.compositesa.2016.05.007

    Article  CAS  Google Scholar 

  18. Deka, B.K., Hazarika, B.K., Kwon, O.B., Kim, D.Y., Bin Park, Y., Park, H.W.: Multifunctional enhancement of woven carbon fiber/ZnO nanotube-based structural supercapacitor and polyester resin-domain solid-polymer electrolytes. Chem. Eng. J. 325 672–680 (2017). https://doi.org/10.1016/j.cej.2017.05.093.

  19. Deka, B.K., Hazarika, A., Kim, J., Kim, N., Jeong, H.E., Park, Y.-B., Park, H.W.: Bimetallic copper cobalt selenide nanowire-anchored woven carbon fiber-based structural supercapacitors. Chem. Eng. J. 355, 551–559 (2019). https://doi.org/10.1016/j.cej.2018.08.172

    Article  CAS  Google Scholar 

  20. Javaid, A., Irfan, M.: Multifunctional structural supercapacitors based on graphene nanoplatelets/carbon aerogel composite coated carbon fiber electrodes. Mater. Res. Express. 6, 016310 (2018). https://doi.org/10.1088/2053-1591/aae862

    Article  CAS  Google Scholar 

  21. Hagberg, J., Maples, H.A., Alvim, K.S.P., Xu, J., Johannisson, W., Bismarck, A., Zenkert, D., Lindbergh, G.: Lithium iron phosphate coated carbon fiber electrodes for structural lithium ion batteries. Compos. Sci. Technol. 162, 235–243 (2018). https://doi.org/10.1016/j.compscitech.2018.04.041

    Article  CAS  Google Scholar 

  22. Qian, H., Bismarck, A., Greenhalgh, E.S., Shaffer, M.S.P.: Carbon nanotube grafted carbon fibres: A study of wetting and fibre fragmentation. Compos. A 41, 1107–1114 (2010). https://doi.org/10.1016/j.compositesa.2010.04.004

    Article  CAS  Google Scholar 

  23. Zhang, Q.H., Liu, J.W., Sager, R., Dai, L.M., Baur, J.: Hierarchical composites of carbon nanotubes on carbon fiber: Influence of growth condition on fiber tensile properties. Compos. Sci. Technol. 69, 594–601 (2009). https://doi.org/10.1016/j.compscitech.2008.12.002

    Article  CAS  Google Scholar 

  24. Sager, R.J., Klein, P.J., Lagoudas, D.C., Zhang, Q., Liu, J., Dai, L., Baur, J.W.: Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fiber in an epoxy matrix. Compos. Sci. Technol. 69, 898–904 (2009). https://doi.org/10.1016/j.compscitech.2008.12.021

    Article  CAS  Google Scholar 

  25. Sánchez-Romate, X.F., Bosque, A.D., Artigas-Arnaudas, J., Muñoz, B.K., Sánchez, M., Ureña, A.: A proof of concept of a structural supercapacitor made of graphene coated woven carbon fibers: EIS study and mechanical performance. Electrochim. Acta. 370 (2021). https://doi.org/10.1016/j.electacta.2021.137746.

  26. Castellanos-Gomez, A.: A simple method to characterize the electrical and mechanical properties of micro-fibres. Eur. J. Phys. 34, 1547–1554 (2013). https://doi.org/10.1088/0143-0807/34/6/1547

    Article  Google Scholar 

  27. Xu, J., Johannisson, W., Johansen, M., Liu, F., Zenkert, D., Lindbergh, G., Asp, L.E.: Characterization of the adhesive properties between structural battery electrolytes and carbon fibers. Compos. Sci. Technol. 188, 107962 (2020). https://doi.org/10.1016/j.compscitech.2019.107962

    Article  CAS  Google Scholar 

  28. Li, M., Gu, Y., Liu, Y., Li, Y., Zhang, Z.: Interfacial improvement of carbon fiber/epoxy composites using a simple process for depositing commercially functionalized carbon nanotubes on the fibers. Carbon N. Y. 52, 109–121 (2013). https://doi.org/10.1016/j.carbon.2012.09.011

    Article  CAS  Google Scholar 

  29. Guin, W., Wang, J., Zhang, X., Smith, J.: Carbon nanotube-reinforced hybrid composites enabled by the PopTube approach. Proc. Am. Soc. Compos. 29th Tech. Conf. (2014)

  30. Moaseri, E., Karimi, M., Maghrebi, M., Baniadam, M.: Two-fold enhancement in tensile strength of carbon nanotube–carbon fiber hybrid epoxy composites through combination of electrophoretic deposition and alternating electric field. Int. J. Solids Struct. 51, 774–785 (2014). https://doi.org/10.1016/j.ijsolstr.2013.11.007

    Article  CAS  Google Scholar 

  31. Kosmulski, M., Próchniak, P., Saneluta, C., Kosmulski, M., Próchniak, P.: · C Saneluta, Quantitative assessment of hysteresis in voltammetric curves of electrochemical capacitors. Adsorption 15, 172–180 (2009). https://doi.org/10.1007/s10450-009-9169-6

    Article  CAS  Google Scholar 

  32. Weibull, W.: A Statistical Distribution Function of Wide Applicability. J. Appl. Mech. 18, 293–297 (1951)

    Article  Google Scholar 

  33. Naito, K., Yang, J.-M., Tanaka, Y., Kagawa, Y.: The effect of gauge length on tensile strength and Weibull modulus of polyacrylonitrile (PAN)- and pitch-based carbon fibers. J. Mater. Sci. 47, 632–642 (2012). https://doi.org/10.1007/s10853-011-5832-x

    Article  CAS  Google Scholar 

  34. Moriche, R., Jiménez-Suárez, A., Sánchez, M., Prolongo, S.G., Ureña, A.: Graphene nanoplatelets coated glass fibre fabrics as strain sensors. Compos. Sci. Technol. 146, 59–64 (2017). https://doi.org/10.1016/j.compscitech.2017.04.019

    Article  CAS  Google Scholar 

  35. Zhang, L.L., Zhao, X.S.: Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520 (2009). https://doi.org/10.1039/b813846j

    Article  CAS  Google Scholar 

  36. Zhu, Y., Hu, H., Li, W., Zhang, X.: Resorcinol-formaldehyde based porous carbon as an electrode material for supercapacitors. Carbon N. Y. 45, 160–165 (2007). https://doi.org/10.1016/J.CARBON.2006.07.010

    Article  CAS  Google Scholar 

  37. Wang, J., Yang, X., Wu, D., Fu, R., Dresselhaus, M.S., Dresselhaus, G.: The porous structures of activated carbon aerogels and their effects on electrochemical performance. J. Power Sources. 185, 589–594 (2008). https://doi.org/10.1016/J.JPOWSOUR.2008.06.070

    Article  CAS  Google Scholar 

  38. Yang, K.-L., Yiacoumi, S., Tsouris, C.: Electrosorption capacitance of nanostructured carbon aerogel obtained by cyclic voltammetry. J. Electroanal. Chem. 540, 159–167 (2003). https://doi.org/10.1016/S0022-0728(02)01308-6

    Article  CAS  Google Scholar 

  39. Ambrosi, A., Sasaki, T., Pumera, M.: Platelet Graphite Nanofibers for Electrochemical Sensing and Biosensing: The Influence of Graphene Sheet Orientation. Chem. - An Asian J. 5, 266–271 (2010). https://doi.org/10.1002/asia.200900544

    Article  CAS  Google Scholar 

  40. Tagawa, T., Miyata, T.: Size effect on tensile strength of carbon fibers. Mater. Sci. Eng. A. 238, 336–342 (1997). https://doi.org/10.1016/S0921-5093(97)00454-1

    Article  Google Scholar 

Download references

Funding

This work was supported by the Agencia Estatal de Investigación of the Spanish

Government (project MULTIFUNC-EVs PID2019-107874RB-I00) and Comunidad de Madrid regional government (project ADITIMAT-CM (P2018/NMT-4411)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquín Artigas-Arnaudas.

Ethics declarations

Conflicts of Interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artigas-Arnaudas, J., Muñoz, B.K., Sánchez, M. et al. Surface Modifications of Carbon Fiber Electrodes for Structural Supercapacitors. Appl Compos Mater 29, 889–900 (2022). https://doi.org/10.1007/s10443-021-09998-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-021-09998-5

Keywords

Navigation