Skip to main content
Log in

Physico-chemical Characterization of PLA-based Composites Holding Carbon Nanofillers

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Polylactic acid (PLA) is the most wide-scale investigated biodegradable and renewable under specific processing conditions thermoplastic polyester. As bioplastic material, it has the potential to be used as a substituent of conventional polymers derived from fossil fuel resources. The drawbacks possessed by PLA as poor thermal and electrical properties, mechanical brittleness, and ability to undergo polymer chain degradation in ambient medium could be overcome by incorporation of carbon nanofillers in the PLA matrix. Raman spectroscopy was used to study the effect of graphene nanoplatelets (GNPs) and multiwall carbon nanotubes (MWCNTs) on the nanocomposite molecular morphology and structure. The carbon nanofillers impact on the crystallinity of the melt blended hybrid material and the changes in the composite architecture were defined by applying of physical methods as X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Thermo-gravimetric analysis (TGA) was implemented to outline the thermal properties of the nanocomposites. An excellent homogeneity and firmly expressed crystalline structure of the produced composite materials were disclosed. Tensile testing showed that coupling GNPs and MWCNTs has higher positive effect on ultimate tensile strength of the nanocomposites and lower influence on Young’s modulus of elasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author on request.

References

  1. Chang, J.H., An, Y.U., Sur, G.S.: Poly(lactic acid) nanocomposites with various organoclays. I. Thermomechanical properties, morphology, and gas permeability. J. Polym. Sci. 41, 94–103 (2003).

  2. Pinto, A.M., Susana, M., Goncalves, I.C., Gama, F.M., Mendes, A.M., Magalhães, F.D.: Biocompatibility of poly(lactic acid) with incorporated graphene-based materials. Colloids Surf B 104, 229–238 (2013)

    Article  CAS  Google Scholar 

  3. Gupta, B., Revagade, N., Hilborn, J.: Poly(lactic acid) fiber: An overview. Prog. Polym. Sci. 32, 455–482 (2007)

    Article  CAS  Google Scholar 

  4. Scaffaro, R., Lopresti, F., Botta, L., Maio, A.: Mechanical behavior of polylactic acid/polycaprolactone porous layered functional composites. Compos. Part B Eng. 98, 70–77 (2016)

    Article  CAS  Google Scholar 

  5. Hofstätter, T., Pedersen, D.B., Tosello, G., Hansen, H.N.: State-of-the-art of fiber-reinforced polymers in additive manufacturing technologies. J. Reinf. Plast. Compos. 36, 1061–1073 (2017)

    Article  Google Scholar 

  6. Bayer, I., Bayer, S.I.: Thermomechanical Properties of Polylactic Acid-Graphene Composites: A State-of-the-art Review for Biomedical Applications. Materials 10, 748 (2017)

    Article  Google Scholar 

  7. Luo, Y., Cao, Y., Guo, G.: Effects of TiO2 nanoparticles on the photodegradation of poly (lactic acid). J. Appl. Polym. Sci. 135, 46509 (2018)

    Article  Google Scholar 

  8. Rasal, R.M., Janorkar, A.V., Hirt, D.E.: Poly(lactic acid) modifications. Prog. Polym. Sci. 35, 338–356 (2010)

    Article  CAS  Google Scholar 

  9. Gorbunova, M., Komratova, V., Grishchuk, A., Badamshina, E., Anokhin, D.: The effect of addition of low-layer graphene nanoparticles on structure and mechanical properties of polyurethane-based block copolymers. Polym. Bull. 76, 5813–5829 (2019)

    Article  CAS  Google Scholar 

  10. Wan Dalina, W.A.D., Mariatti, M., Tan, S.H: Multi-walled carbon nanotubes buckypaper/epoxy composites: effect of loading and pressure on tensile and electrical properties. Polym. Bull. 76, 2801–2817 (2019).

  11. Bao, C., Song, L., Xing, W., Yuan, B., Wilkie, C.A., Huang, J., Guo, Y., Hu, Y.: Preparation of graphene by pressurized oxidation and multiplex reduction and its polymer nanocomposites by masterbatch-based melt blending. J. Mater. Chem. 22, 6088–6096 (2012)

    Article  CAS  Google Scholar 

  12. Botta, L., Scaffaro, R., Sutera, F., Mistretta, M.C.: Reprocessing of PLA/Graphene Nanoplatelets Nanocomposites. Polymers 10, 18 (2017)

    Google Scholar 

  13. Gao, Y., Picot, O.T., Tu, W., Bilotti, E., Peijs, T.: Multilayer coextrusion of graphene polymer nanocomposites with enhanced structural organization and properties. J. Appl. Polym. Sci. 135, 46041 (2018)

    Article  Google Scholar 

  14. Papageorgiou, D.G., Kinloch, I.A., Young, R.J.: Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater. Sci. 90, 75–127 (2017)

    Article  CAS  Google Scholar 

  15. Pullicino, E., Zou, W., Gresil, M.: The Effect of Shear Mixing Speed and Time on the Mechanical Properties of GNP/Epoxy Composites. Appl. Compos. Mater. 24, 301–311 (2017)

    Article  CAS  Google Scholar 

  16. Kotsilkova, R., Angelova, P., Batakliev, T., Angelov, V., Di Maio, R., Silvestre, C.: Study on Aging and Recover of Poly (Lactic) Acid Composite Films with Graphene and Carbon Nanotubes Produced by Solution Blending and Extrusion. Coatings 9, 359 (2019)

    Article  CAS  Google Scholar 

  17. Ivanov, E., Kotsilkova, R., Xia, H., Chen, Y., Donato, R.K., Donato, K., Godoy, A.P., Di Maio, R., Silvestre, C., Cimmino, S., Angelov, V.: PLA/Graphene/MWCNT Composites with Improved Electrical and Thermal Properties Suitable for FDM 3D Printing Applications. Appl. Sci. 9, 1209 (2019)

    Article  CAS  Google Scholar 

  18. Hagita, K., Morita, H.: Effects of polymer/filler interactions on glass transition temperatures of filler-filled polymer nanocomposites. Polymer 178, 121615 (2019)

    Article  CAS  Google Scholar 

  19. Hu, M., Hui, K.S., Hui, K.N.: Role of graphene in MnO2/graphene composite for catalytic ozonation of gaseous toluene. Chem. Eng. J. 254, 237–244 (2014)

    Article  CAS  Google Scholar 

  20. Batakliev, T., Petrova-Doycheva, I., Angelov, V., Georgiev, V., Ivanov, E., Kotsilkova, R., Casa, M., Cirillo, C., Adami, R., Sarno, M., Ciambelli, P.: Effects of graphene nanoplatelets and multiwall carbon nanotubes on the structure and mechanical properties of Poly(lactic acid) composites: A comparative study. Appl. Sci. 9, 469 (2019)

    Article  CAS  Google Scholar 

  21. De Oliveira, Y.D.C., Amurin, L.G., Valim, F.C.F., Fechine, G.G.M., Andrade, R.J.E.: The role of physical structure and morphology on the photodegradation behavior of polypropylene-graphene oxide nanocomposites. Polymer 176, 146–158 (2019)

    Article  Google Scholar 

  22. Shen, J., Shi, M., Li, N., Yan, B., Ma, H., Hu, Y., Ye, M.: Facile Synthesis and Application of Ag-Chemically Converted Graphene Nanocomposite. Nano. Res. 3, 339–349 (2010)

    Article  CAS  Google Scholar 

  23. Lee, S., Hong, J.Y., Jang, J.: The effect of graphene nanofiller on the crystallization behavior and mechanical properties of poly(vinyl alcohol). Polym. Int. 62, 901–908 (2013)

    Article  CAS  Google Scholar 

  24. Yadhukulakrishnan, G.B., Karumuri, S., Rahman, A., Singh, R.P., Kaan Kalkan, A., Harimkar, S.P.: Spark plasma sintering of graphene reinforced zirconium diboride ultra-high temperature ceramic composites. Ceram. Int. 39, 6637–6646 (2013)

    Article  CAS  Google Scholar 

  25. Radmilovic, V.V., Carraro, C., Uskokovic, P.S., Radmilovic, V.R.: Structure and Properties of Polymer Nanocomposite Films with Carbon Nanotubes and Graphene. Polym. Compos. 38, E490–E497 (2017)

    Article  CAS  Google Scholar 

  26. Schadler, L.S., Giannaris, S.C., Ajayan, P.M.: Load transfer in carbon nanotube epoxy composites. Appl. Phys. Lett. 73, 3842 (1998)

    Article  CAS  Google Scholar 

  27. Chieng, B.W., Ibrahim, N.A., Wan Yunus, W.M.Z., Hussein, M.Z., Silverajah, V.S.G.: Graphene nanoplatelets as novel reinforcement filler in poly(lactic acid)/epoxidized palm oil green nanocomposites: Mechanical Properties. Int. J. Mol. Sci. 13, 10920–10934 (2012).

  28. Asleben, M., Schick, C.: The melting of polymers- a three-phase approach. Thermochim. Acta 238, 203–227 (1994)

    Article  Google Scholar 

  29. Kotsilkova, R., Petrova-Doycheva, I., Menseidov, D., Ivanov, E., Paddubskaya, A., Kuzhir, P.: Exploring thermal annealing and graphene-carbon nanotube additives to enhance crystallinity, thermal, electrical and tensile properties of aged poly (lactic) acid-based filament for 3D printing. Compos. Sci. Technol. 181, 107712 (2019)

    Article  CAS  Google Scholar 

  30. Xu, J., Chen, T., Yang, C., Li, Z., Mao, Y., Zeng, B., Hsiao, B.: Isothermal Crystallization of Poly(l-lactide) Induced by Graphene Nanosheets and Carbon Nanotubes: A Comparative Study. Macromolecules 43, 5000–5008 (2010)

    Article  CAS  Google Scholar 

  31. Valapa, R.B., Pugazhenthi, G., Katiyar, V.: Effect of graphene content on the properties of poly(lactic acid) nanocomposites. RSC Adv. 5, 28410–28423 (2015)

    Article  CAS  Google Scholar 

  32. Armentano, I., Fortunatu, E., Burgos, N., Dominici, F., Luzi, F., Fiori, S., Jimenez, A., Yoon, K., Ahn, J., Kang, S., Kenny, J.M.: Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase system. Express Polym. Lett. 9, 583–596 (2015)

    Article  CAS  Google Scholar 

  33. Kuan, C.F., Kuan, H.C., Ma, C.C.M., Chen, C.H.: Mechanical and electrical properties of multi-wall carbon nanotube/poly(lactic acid) composites. J. Phys. Chem. Solids 69, 1395–1398 (2008)

    Article  CAS  Google Scholar 

  34. Goodarzi, V., Fasihi, M., Garmabi, H., Ohshima, M., Taki, K., Saeb, M.R.: Microstructure, mechanical and electrical characterizations of bimodal and nanocellular polypropylene/graphene nanoplatelet composite foams. Mater. Today Commun. 25, 101447 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has received funding from the European Union’s Horizon 2020-MSCA-RISE-734164 Graphene 3D Project and by the H2020-FET-Graphene Flagship-881603 Graphene Core 3.

The author would like to acknowledge the contribution of the Bilateral collaboration between IMech, BAS and IPCB-CNR, Napoli/Portici (2019-2021).

This study has also been accomplished with the financial support by the Grant No BG05M2OP001-1.002-0011, financed by the Science and Education for Smart Growth Operational Program (2014-2020) and co-financed by the European Union through the European structural and Investment funds.

This study was also supported in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—PRINT 88887.310339/2018-00 and Fundo Mackenzie de Pesquisa (MackPesquisa, Project No. 181009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todor Batakliev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batakliev, T., Georgiev, V., Kalupgian, C. et al. Physico-chemical Characterization of PLA-based Composites Holding Carbon Nanofillers. Appl Compos Mater 28, 1175–1192 (2021). https://doi.org/10.1007/s10443-021-09911-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-021-09911-0

Keywords

Navigation