Skip to main content
Log in

A Comparison of the Properties of Carbon Fiber Epoxy Composites Produced by Non-autoclave with Vacuum Bag Only Prepreg and Autoclave Process

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The non-autoclave curing technique with vacuum bag only (VBO) prepreg has been conceived as a cost-effective manufacturing method for producing high-quality composite part. This study demonstrated the feasibility of improving composite part’s performances and established the effective mitigation strategies for manufacturing induced defects, such as internal voids and surface porosity. The experimental results highlighted the fact that voids and surface porosity were clearly dependent on the resin viscosity state at an intermediate dwell stage of the curing process. Thereafter, the enhancement of resin flow could lead to achieving high quality parts with minimal void content (1.3%) and high fiber fraction (53 vol.%). The mechanical testing showed comparable in-plane shear and compressive strength to conventional autoclave. The microscopic observations also supported the evidence of improved interfacial bonding in terms of excellent fiber wet-out and minimal void content for the optimized cure cycle condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Varvani-Farahani, A.: Composite materials: characterization, fabrication and application-research challenges and directions. Appl. Compos. Mater. 17(2), 63–67 (2010)

    Article  Google Scholar 

  2. Lachaud, F., Espinosa, C., Michel, L., Rahme, P., Piquet, R.: Modelling strategies for predicting the residual strength of impacted composite aircraft fuselages. Appl. Compos. Mater. 22(6), 599–621 (2015)

    Article  Google Scholar 

  3. Alderliesten, R.C.: Critical review on the assessment of fatigue and fracture in composite materials and structures. Eng. Fail. Anal. 35(15), 370–379 (2013)

    Article  Google Scholar 

  4. Grunenfelder, L.K., Dills, A., Centea, T., Nutt, S.R.: Effect of prepreg format on defect control in out-of-autoclave processing. Compos. A: Appl. Sci. Manuf. 93, 88–99 (2017)

    Article  CAS  Google Scholar 

  5. Aleksendrić, D., Carlone, P., Ćirović, V.: Optimization of the temperature-time curve for the curing process of thermoset matrix composites. Appl. Compos. Mater. 23(5), 1047–1063 (2016)

    Article  Google Scholar 

  6. Bodaghi, M., Cristóvão, C., Gomes, R., Correia, N.C.: Experimental characterization of voids in high fibre volume fraction composites processed by high injection pressure RTM. Compos Part A. Appl. Sci. Manuf. 82, 88–99 (2016)

    Article  CAS  Google Scholar 

  7. Marsh, G.: De-autoclaving’ prepreg processing. Reinf. Plast. 56(5), 20–25 (2012)

    Article  Google Scholar 

  8. Xu, X., Wang, X., Liu, W., Zhang, X., Li, Z., Du, S.: Microwave curing of carbon fiber/bismaleimide composite laminates: material characterization and hot pressing pretreatment. Mater. Des. 97(5), 316–323 (2016)

    Article  CAS  Google Scholar 

  9. Grunenfelder, L.K., Nutt, S.R.: Void formation in composite prepregs – effect of dissolved moisture. Compos. Sci. Technol. 70(16), 2304–2309 (2010)

    Article  CAS  Google Scholar 

  10. Helmus, R., Centea, T., Hubert, P., Hinterhölzl, R.: Out-of-autoclave prepreg consolidation: coupled air evacuation and prepreg impregnation modeling. J. Compos. Mater. 50(10), 1403–1413 (2015)

    Article  Google Scholar 

  11. Garschke, C., Weimer, C., Parlevliet, P.P., Fox, B.L.: Out-of-autoclave cure cycle study of a resin film infusion process using in situ process monitoring. Compos Part A. Appl. Sci. Manuf. 43(6), 935–944 (2012)

    Article  CAS  Google Scholar 

  12. Han, K., Jiang, S., Zhang, C., Wang, B.: Flow modeling and simulation of SCRIMP for composites manufacturing. Compos Part A. Appl. Sci. Manuf. 31(1), 79–86 (2000)

    Article  Google Scholar 

  13. Li, W., Krehl, J., Gillespie, J.W., Heider, D., Endrulat, M., Hochrein, K., Dunham, M.G., Dubois, C.J.: Process and performance evaluation of the vacuum-assisted process. J. Compos. Mater. 38(20), 1803–1814 (2004)

    Article  CAS  Google Scholar 

  14. Centea, T., Nutt, S.R.: Manufacturing cost relationships for vacuum bag-only prepreg processing. J. Compos. Mater. 50(17), 2305–2321 (2015)

    Article  Google Scholar 

  15. Thomas, S., Nutt, S.R.: Temperature dependence of resin flow in a resin film infusion (RFI) process by ultrasound imaging. Appl. Compos. Mater. 16(3), 183–196 (2009)

    Article  CAS  Google Scholar 

  16. Ridgard, C.: Out of autoclave composite technology for aerospace, defense and space structures. In: Proceeding of SAMPE Conference, Baltimore, MD (2009)

  17. Ridgard, C.: Next generation out of autoclave systems. In: Proceeding of SAMPE Conference, Seattle, WA (2010)

  18. Kratz, J., Hsiao, K., Fernlund, G., Hubert, P.: Thermal models for MTM45-1 and Cycom 5320 out-of-autoclave prepreg resins. J. Compos. Mater. 47, 341–352 (2012)

    Article  Google Scholar 

  19. Agius, S.L., Magniez, K.J.C., Fox, B.L.: Cure behaviour and void development within rapidly cured out-of-autoclave composites. Compos. Part B. 47, 230–237 (2013)

    Article  CAS  Google Scholar 

  20. Cong, J., Zhang, B.: Methodology for evaluating manufacturability of composite materials. Appl. Compos. Mater. 19(3–4), 189–201 (2012)

    Article  CAS  Google Scholar 

  21. Guo, Z.S., Liu, L., Zhang, B.M., Du, S.: Critical void content for thermoset composite laminates. J. Compos. Mater. 43(17), 1775–1790 (2006)

    Google Scholar 

  22. Hernández, S., Sket, F., González, C., Llorca, J.: Optimization of curing cycle in carbon fiber-reinforced laminates: void distribution and mechanical properties. Compos. Sci. Technol. 85(21), 73–82 (2013)

    Article  Google Scholar 

  23. Jeong, H.: Effects of voids on the mechanical strength and ultrasonic attenuation of laminated composites. J. Compos. Mater. 31(3), 276–292 (1997)

    Article  CAS  Google Scholar 

  24. Park, S.Y., Choi, W.J., Choi, H.S.: The effects of void contents on the long-term hygrothermal behaviors of glass/epoxy and GLARE laminates. Compos. Struct. 92(1), 18–24 (2010)

    Article  Google Scholar 

  25. Costa, M.L., Rezende, M.C., De Almeida, S.F.M.: Strength of hygrothermally conditioned polymer composites with voids. J. Compos. Mater. 39(21), 1943–1961 (2005)

    Article  CAS  Google Scholar 

  26. Pang, K.P., Gillham, J.K.: Competition between cure and thermal degradation in a high Tg epoxy system: effect of time and temperature of isothermal cure on the glass transition temperature. J. Appl. Polym. Sci. 39(4), 909–933 (1990)

    Article  CAS  Google Scholar 

  27. Yenilmez, B., Senan, M., Sozer, E.M.: Variation of part thickness and compaction pressure in vacuum infusion process. Compos. Sci. Technol. 69(11–12), 1710–1719 (2009)

    Article  CAS  Google Scholar 

  28. Kim, D., Centea, T., Nutt, S.R.: Out-time effects on cure kinetics and viscosity for an out-of-autoclave (OOA) prepreg: modelling and monitoring. Compos. Sci. Technol. 100(21), 63–69 (2014)

    Article  CAS  Google Scholar 

  29. Kim, D., Centea, T., Nutt, S.R.: Effects of out-time on viscosity, gelation and vitrification. Compos. Sci. Technol. 102(6), 132–138 (2014)

    Article  CAS  Google Scholar 

  30. Garschke, C., Parlevliet, P.P., Weimer, C., Fox, B.L.: Cure kinetics and viscosity modelling of a high-performance epoxy resin film. Polym. Test. 32(1), 150–157 (2013)

    Article  CAS  Google Scholar 

  31. AITM 3-0002. Analysis of non metallic materials (uncured) by differential scanning calorimetry. Airbus Industry, France (1997)

  32. Abouhamzeh, M., Sinke, J., Jansen, K.M.B., Benedictus, R.: Kinetic and thermo-viscoelastic characterisation of the epoxy adhesive in GLARE. Compos. Struct. 124, 19–28 (2015)

    Article  Google Scholar 

  33. Xie, M., Zhang, Z., Gu, Y., Li, M., Su, Y.: A new method to characterize the cure state of epoxy prepreg by dynamic mechanical analysis. Thermochim. Acta. 487(1–2), 8–17 (2009)

    Article  CAS  Google Scholar 

  34. Boey, F.Y.C., Qiang, W.: Experimental modeling of the cure kinetics of an epoxy-hexaanhydro-4-methylphthalicanhydride (MHHPA) system. Polymer. 41, 2081–2094 (2000)

    Article  CAS  Google Scholar 

  35. Alavi-Soltani, S., Sabzevari, S., Koushyar, H., Minaie, B.: Thermal, rheological, and mechanical properties of a polymer composite cured at different isothermal cure temperatures. J. Compos. Mater. 46(5), 575–587 (2011)

    Article  Google Scholar 

  36. ASTM D3529/D3529M-97: Standard test method for matrix solids content and matrix content of composite prepreg. ASTM International, West Conshohocken (1997)

    Google Scholar 

  37. ASTM D3530-97: Standard test method for volatiles content of composite material prepreg. ASTM International, West Conshohocken (2015)

    Google Scholar 

  38. Hamill, L., Centea, T., Nutt, S.R.: Surface porosity during vacuum bag-only prepreg processing: Causes and mitigation strategies. Compos Part A. Appl. Sci. Manuf. 7, 1–10 (2015)

    Article  Google Scholar 

  39. Tomblin, J.S., Ng, Y.C., Raju, K.S.: Material qualification and equivalency for polymer matrix composite material systems: updated procedure (report no.: DOT/FAA/AR-03/19). U.S. Department of Transportation, Washington, D.C (2003)

  40. ASTM D792-13: Standard test methods for density and specific gravity (relative density) of plastics by displacement. ASTM International, West Conshohocken (2013)

    Google Scholar 

  41. ASTM D3171-15: Standard test methods for constituent content of composite materials. ASTM International, West Conshohocken (2015)

    Google Scholar 

  42. ASTM D2734-16: Standard test methods for void content of reinforced plastics. ASTM International, West Conshohocken (2016)

    Google Scholar 

  43. AITM1-0003. Determination of the glass transition temperatures (DMA). Airbus Industry, France (1997)

  44. ASTM D3518-13: Standard test methods for in-plane shear response of polymer matrix composite materials by tensile test of a ±45° laminate. ASTM International, West Conshohocken (2013)

    Google Scholar 

  45. ASTM D6641-16: Standard test methods for compressive properties of polymer matrix composite materials using a combined loading compression (CLC) test fixture. ASTM International, West Conshohocken (2016)

    Google Scholar 

  46. MIL-HDBK-17-1F. Composite materials handbook, Volume 1, polymer matrix composites guidelines for characterization of structural materials. U.S. Department of Defense, Washington, D.C (2002)

  47. Costa, M.L., Rezende, M.C., Almeida, S.F.M.: Effect of void content on the moisture absorption in polymeric composites. Polym. Plast. Technol. Eng. 45(6), 691–698 (2006)

    Article  CAS  Google Scholar 

  48. Liu, L., Zhang, B.M., Wang, D.F., Wu, Z.J.: Effects of cure cycles on void content and mechanical properties of composite laminates. Compos. Struct. 73(3), 303–309 (2006)

    Article  Google Scholar 

  49. Choi, H.S., Ahn, K.J., Nam, J.D., Chun, H.J.: Hygroscopic aspects of epoxy/carbon fiber composite laminates in aircraft environments. Compos Part A. Appl. Sci. Manuf. 32(5), 709–720 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Yoon Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S.Y., Choi, C.H., Choi, W.J. et al. A Comparison of the Properties of Carbon Fiber Epoxy Composites Produced by Non-autoclave with Vacuum Bag Only Prepreg and Autoclave Process. Appl Compos Mater 26, 187–204 (2019). https://doi.org/10.1007/s10443-018-9688-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-018-9688-y

Keywords

Navigation