Skip to main content
Log in

Finite Element Analysis of Thermo-Mechanical Properties of 3D Braided Composites

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

This paper presents a modified finite element model (FEM) to investigate the thermo-mechanical properties of three-dimensional (3D) braided composite. The effective coefficients of thermal expansion (CTE) and the meso-scale mechanical response of 3D braided composites are predicted. The effects of the braiding angle and fiber volume fraction on the effective CTE are evaluated. The results are compared to the experimental data available in the literature to demonstrate the accuracy and reliability of the present method. The tensile stress distributions of the representative volume element (RVE) are also outlined. It is found that the stress of the braiding yarn has a significant increase with temperature rise; on the other hand, the temperature change has an insignificant effect on the stress of the matrix. In addition, a rapid decrease in the tensile strength of 3D braided composites is observed with the increase in temperature. It is revealed that the thermal conditions have a significant effect on the strength of 3D braided composites. The present method provides an effective tool to predict the stresses of 3D braided composites under thermo-mechanical loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chou, T.W., Ko, F.K.: Textile structural composites. Elsevier Science Publishers, Amsterdam (1989)

    Google Scholar 

  2. Whyte DW: Ph.D. thesis, Drexel University, Philadelphia, PA (1986)

  3. Ma, C.L., Yang, J.M., Chou, T.W.: Elastic stiffness of three-dimensional braided textile structural composites. In: Whitney, J.M. (ed.) Composite materials: testing and design (seventh conference), ASTM STP 893, pp. 404–421. American Society for Testing and Materials, Philadelphia (1986)

    Chapter  Google Scholar 

  4. Yang, J.M., Ma, C.L., Chou, T.W.: Fiber inclination model of three-dimensional textile structural composites. J. Compos. Mater. 20(5), 472–483 (1986)

    Article  Google Scholar 

  5. Byun JH, Du GW, Chou TW: Analysis and modeling of three dimensional textile structural composites. High-Tech Fibrous Materials, pp. 22–33 (1991)

  6. Wu, D.L.: Three-cell model and 5D braided structural composites. Compos. Sci. Technol. 56(3), 225–233 (1996)

    Article  Google Scholar 

  7. Chen, L., Tao, X.M., Choy, C.L.: On the microstructure of three-dimensional braided preforms. Compos. Sci. Technol. 59(3), 2383–2391 (1999)

    Article  Google Scholar 

  8. Sun, H.Y., Qiao, X.: Prediction of the mechanical properties of three-dimensionally braided composites. Compos. Sci. Technol. 57(6), 623–629 (1997)

    Article  Google Scholar 

  9. Yu, X.G., Cui, J.Z.: The prediction on mechanical properties of 4-step braided composites via two-scale method. Compos. Sci. Technol. 67(3–4), 471–480 (2007)

    Article  Google Scholar 

  10. Tang, Z.X., Postle, R.: Mechanics of three-dimensional braided structures for composite materials-part II: prediction of the elastic moduli. Compos. Struct. 51(4), 451–457 (2001)

    Article  Google Scholar 

  11. Dong, J.W., Feng, M.L.: Asymptotic expansion homogenization for simulating progressive damage of 3D braided composites. Compos. Struct. 92(4), 873–882 (2010)

    Article  Google Scholar 

  12. Mohajerjasbi, S.: Predictions for coefficients of thermal expansion of three-dimensional braided composites. AIAA J. 35(1), 141–144 (1997)

    Article  Google Scholar 

  13. Yao, X.F., Yang, G., Yao, Z.H., Dai, F.L.: Experimental study of thermal expansion behavior on braided structure composite. Acta Mater Compos Sin. 17(4), 20–25 (2000)

    Google Scholar 

  14. Wang, A.S.D., Mohajerjasbi, S.: Thermoelastic properties of 3-D braided composites: experiment and predictions. Am. Soc. Mech. Eng., Noise Control Acoust. Div. NCA 20, 275–293 (1995)

    Google Scholar 

  15. Cheng, L.: Thermal expansion coefficients of carbon/epoxy braided composites. J. Solid Rocket Technol. 33(1), 108–111 (2010)

    Google Scholar 

  16. Li, D.S., Lu, Z.X., Liu, Z.G., Li, Z.P.: Finite element analysis of thermal conductivity of three dimensional and five directional braided composites. J. Aerosp Power. 23(8), 1455–1460 (2008)

    Google Scholar 

  17. Liang, J., Du, S.Y., Chen, X.F.: Thermal expansion coefficients of 3-D braided composites with penny-shaped microcracks. Acta Mater Compos Sin. 15(3), 103–107 (1998)

    Google Scholar 

  18. Xia, B., Lu, Z.X.: Finite element analysis on thermo-physical properties of 3D braided composites. Acta Aeronaut Astronaut Sin. 32(6), 1040–1049 (2011)

    Google Scholar 

  19. Li, Z.M., Shen, H.S.: Postbuckling analysis of three-dimensional textile composite cylindrical shells under axial compression in thermal environments. Compos. Sci. Technol. 68(3–4), 872–879 (2008)

    Article  Google Scholar 

  20. Li, K.Z., Li, H.J.: Thermal expansion property of carbon/carbon composite. Trans. Mater. Heat Treat. 27(6), 1–4 (2006)

    Google Scholar 

  21. Liao, X.L., Li, H.J., Xu, W.F.: Study on the thermal expansion properties of C/C composites. J. Mater. Sci. 42(10), 3435–3439 (2007)

    Article  Google Scholar 

  22. Zeng, T., Wu, L.Z., Guo, L.C.: Mechanical analysis of 3D braided composites: a finite element model. Compos. Struct. 64(3–4), 399–404 (2004)

    Article  Google Scholar 

  23. Zeng, T., Wu, L.Z., Guo, L.C.: A finite element model for failure analysis of 3D braided composites. Mater. Sci. Eng., A 366(1), 144–151 (2004)

    Article  Google Scholar 

  24. Zeng, T., Fang, D.N., Ma, L., Guo, L.C.: Predicting the nonlinear response and failure of 3D braided composites. Mater. Lett. 58(26), 3237–3241 (2004)

    Article  Google Scholar 

  25. Li, W., Hammad, M., El-Shiekh, A.: Structural analysis of 3-D braided preforms for composites part II: the two-step preforms. J. Text. Inst. 81(4), 491–514 (1990)

    Article  Google Scholar 

  26. Wang, Y.Q., Wang, A.S.D.: On the topological yarn structure of 3-D rectangular and tubular braided preforms. Compos. Sci. Technol. 51(4), 575–586 (1994)

    Article  Google Scholar 

  27. Kalidindi, S.R., Franco, E.: Numerical evaluation of isostrain and weighted-average models for elastic moduli of three-dimensional composites. Compos. Sci. Technol. 57(3), 293–305 (1997)

    Article  Google Scholar 

  28. Sun, B.Z., Liu, R.Q., Gu, B.H.: Numerical simulation of three-point bending fatigue of four-step 3-D braided rectangular composite under different stress levels from unit-cell approach. Comput. Mater. Sci. 65, 836–841 (2012)

    Google Scholar 

  29. Jiang, L.L., Zeng, T., Yan, S., Fang, D.N., Guo, Y.: Predicting mechanical properties of 3D braided composites using a helix geometry model. Polym. Polym. Compos. 19(4–5), 397–400 (2011)

    Google Scholar 

  30. Xu, K., Xu, X.W.: Finite element analysis of mechanical properties of 3D five-directional braided composites. Mater. Sci. Eng., A 487(1–2), 499–509 (2008)

    Article  Google Scholar 

  31. Chamis, C.C.: Simplified composite equations for strength, fracture toughness and environmental. SAMPE J. 15(4), 41–55 (1984)

    Google Scholar 

  32. Li, Z.M.: Thermal postbuckling behavior of 3D braided rectangular plates. J. Therm Stresses. 34(7), 626–649 (2011)

    Article  Google Scholar 

  33. Zhao, S.G., Liu, Z.G., Feng, Z.H., Yao, C.Z., Yu, R.L.: Thermal property of 3-D braided fiber composites: experimental and numerical results. Acta Aeronaut Astronaut Sin. 23(2), 102–105 (2002). Cheng W../../Program Files/Youdao/Dict/resultui/queryresult.html

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Foundation of Heilongjiang Department of Education (12521102), the National Natural Science Foundation of China (11272110, 9101602, 10972070) and the Science and Technology Innovation Team in University of Heilongjiang Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zeng.

Appendix A

Appendix A

The stiffness matrix of the braiding yarns is

$$ \left[{D}_Y\right]={\left[T\right]}^T\left[{D}_Y^{\prime}\right]\left[T\right] $$
(A-1)

where [D Y ] is the stiffness matrix referred to the material coordinate system

$$ \left[{D}_Y^{\prime}\right]=={\left[\begin{array}{cccccc}\hfill \frac{1}{E_{11}}\hfill & \hfill -\frac{\gamma_{12}}{E_{11}}\hfill & \hfill -\frac{\gamma_{31}}{E_{33}}\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill -\frac{\gamma_{12}}{E_{11}}\hfill & \hfill \frac{1}{E_{11}}\hfill & \hfill -\frac{\gamma_{31}}{E_{33}}\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill -\frac{\gamma_{31}}{E_{33}}\hfill & \hfill -\frac{\gamma_{31}}{E_{33}}\hfill & \hfill \frac{1}{E_{33}}\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill \frac{1}{G_{31}}\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill \frac{1}{G_{31}}\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill \frac{1}{G_{12}}\hfill \end{array}\right]}^{-1} $$
(A-2)

[T] is the transformation matrix

$$ \left[T\right]=\left[\begin{array}{cccccc}\hfill {l}_1^2\hfill & \hfill {m}_1^2\hfill & \hfill {n}_1^2\hfill & \hfill 2{m}_1{n}_1\hfill & \hfill 2{n}_1{l}_1\hfill & \hfill 2{l}_1{m}_1\hfill \\ {}\hfill {l}_2^2\hfill & \hfill {m}_2^2\hfill & \hfill {n}_2^2\hfill & \hfill 2{m}_2{n}_2\hfill & \hfill 2{n}_2{l}_2\hfill & \hfill 2{l}_2{m}_2\hfill \\ {}\hfill {l}_3^2\hfill & \hfill {m}_3^2\hfill & \hfill {n}_3^2\hfill & \hfill 2{m}_3{n}_3\hfill & \hfill 2{n}_3{l}_3\hfill & \hfill 2{l}_3{m}_3\hfill \\ {}\hfill {l}_2{l}_3\hfill & \hfill {m}_2{m}_3\hfill & \hfill {n}_2{n}_3\hfill & \hfill {m}_2{m}_3+{m}_3{n}_2\hfill & \hfill {n}_2{l}_3+{n}_3{l}_2\hfill & \hfill {l}_2{m}_3+{l}_3{m}_2\hfill \\ {}\hfill {l}_3{l}_1\hfill & \hfill {m}_3{m}_1\hfill & \hfill {n}_3{n}_1\hfill & \hfill {m}_3{n}_1+{m}_1{n}_3\hfill & \hfill {n}_3{l}_1+{n}_1{l}_3\hfill & \hfill {l}_3{m}_1+{l}_1{m}_3\hfill \\ {}\hfill {l}_1{l}_2\hfill & \hfill {m}_1{m}_2\hfill & \hfill {n}_1{n}_2\hfill & \hfill {m}_1{n}_2+{m}_2{n}_1\hfill & \hfill {n}_1{l}_2+{n}_2{l}_1\hfill & \hfill {l}_1{m}_2+{l}_2{m}_1\hfill \end{array}\right] $$
(A-3)

where (l i , m i , n i ) (i = 1, 2, 3) are the direction cosines between the axial direction of the braiding yarns and axis of the global coordinate system (X-Y-Z).

The stiffness matrix of the resin is

$$ \left[{D}_M\right]==\left[\begin{array}{cccccc}\hfill \frac{1}{E_m}\hfill & \hfill -\frac{\gamma_m}{E_m}\hfill & \hfill -\frac{\gamma_m}{E_m}\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill -\frac{\gamma_m}{E_m}\hfill & \hfill \frac{1}{E_m}\hfill & \hfill -\frac{\gamma_m}{E_m}\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill -\frac{\gamma_m}{E_m}\hfill & \hfill -\frac{\gamma_m}{E_m}\hfill & \hfill \frac{1}{E_m}\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill \frac{2\left(1+{\gamma}_m\right)}{E_m}\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill \frac{2\left(1+{\gamma}_m\right)}{E_m}\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill \frac{2\left(1+{\gamma}_m\right)}{E_m}\hfill \end{array}\right] $$
(A-4)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Ll., Xu, Gd., Cheng, S. et al. Finite Element Analysis of Thermo-Mechanical Properties of 3D Braided Composites. Appl Compos Mater 21, 325–340 (2014). https://doi.org/10.1007/s10443-013-9339-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-013-9339-2

Keywords

Navigation