Skip to main content

Advertisement

Log in

Design of a Motorcycle Composite Swing-Arm by Means of Multi-objective Optimisation

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

A study for the replacement of a metallic swing-arm of a high performance motorcycle with a composite part is presented. Considering the high structural effectiveness of the original metallic component, the case study evaluates the potential of composites in a challenging application. The FE model of the original component is developed to evaluate the structural performance in the most significant load conditions. A manufacturing process, based on a RTM technique, is proposed and analysed in order to develop realistic design hypotheses. The design approach is based on an optimisation process with 60 design variables. A constrained multi-objective genetic algorithm is applied to identify the solutions representing the best trade-off between mass reduction and improvement of torsional stiffness. Results show that composite materials can enhance the structural efficiency of the original metallic part, even considering technological limitations and damage tolerance requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Beardmore, P.: Composite structures for automobiles. Compos. Struct. 5, 163–176 (1986)

    Article  Google Scholar 

  2. Smith, G.F.: Design and production of composites in the automotive industries. Compos. Manuf. 1(2), 112–116 (1990)

    Article  Google Scholar 

  3. Pinfold, M., Calvert, G.: Experimental analysis of a composite automotive suspension arm. Compos. 25(1), 56–93 (1994)

    Article  Google Scholar 

  4. Verrey, J., Wakeman, M.D., Michaud, V., Manson, J.-A.E.: Manufacturing cost comparison of thermoplastic and thermoset RTM for an automotive floor pan. Compos. Part A 37, 9–22 (2006)

    Article  CAS  Google Scholar 

  5. Sherman, A.M., Krause, A.R., Friedman, P.A., Steenkamer, D.A., Houston, D.Q.: Automotive body materials. In: Buschow, K.H.J., Cahn, R.W., Flemings, M.C., Ilschner. B. (eds.) Encyclopedia of Material: Science and Technology, pp. 415–421. Elsevier Science Ltd. (2001)

  6. Corum, J.M., Battiste, R.L., Ruggles-Wrenn, M.B.: Low-energy impact effects on candidate automotive structural composites. Compos. Sci. Technol. 63, 757–769 (2003)

    Article  Google Scholar 

  7. Legrand, M., Ngoc, Q.A.P.: A study of feasibility of a monoblock racing motorcycle rim. Compos. Sci. Technol. 61, 453–458 (2001)

    Article  Google Scholar 

  8. Santoni, C.: The CFRP MP4-12C Chassis. 10th Automotive Composites Conference and Exhibition, Troy, MI, USA. Sept. 15–16, 2010

  9. Feroboli, P., DeOto, L.: Carbon fiber composite research and development at Automobili Lamborghini. 10th Automotive Composites Conference and Exhibition, Troy, MI, USA. Sept. 15–16, 2010

  10. Ghiasi, H., Lessard, L., Pasini, D., Thouin, M.: Optimum structural and manufacturing design of a braided hollow composite part. Appl. Compos. Mater. 17, 159–173 (2010)

    Article  CAS  Google Scholar 

  11. Iwasaki, H., Mizuta, A., Hasegawa, T., Yoshitake, H.: Development of a magnesium swing arm for motorcycles. SAE Paper 2004-32-0048. Proceedings of Small Engine Technology Conference & Exposition, Graz, Osterreich, September 2004

  12. Schmit Jr., L.A., Farshi, B.: Optimum laminated design for strength and stiffness. Int. J. Numer. Meth. Eng. 7, 519–536 (1977)

    Article  Google Scholar 

  13. Ghiasi, H., Pasini, D., Lessard, L.: Optimum stacking sequence of composite materials Part I: Constant stiffness design. Compos. Struct. 90, 1–11 (2009)

    Article  Google Scholar 

  14. Ghiasi, H., Fayazbakhsh, K., Pasini, D., Lessard, L.: Optimum stacking sequence of composite materials Part I: variable stiffness design. Compos. Struct. 93, 1–13 (2010)

    Article  Google Scholar 

  15. Todoroki, A., Haftka, R.T.: Stacking sequence optimisation by a genetic algorithm with a new recessive gene like repair strategy. Compos. Part B 29B, 277–285 (1998)

    Article  Google Scholar 

  16. Todoroki, A., Ishilawa, T.: Design of experiments for stacking sequence optimizations with genetic algorithm using response surface approximation. Compos. Struct. 64, 349–357 (2004)

    Article  Google Scholar 

  17. Todoroki, A., Terada, Y.: Improved fractal branch and bound method for stacking-sequence optimizations of laminates. AIAA J. 42(1), 141–148 (2004)

    Article  Google Scholar 

  18. Tabakov, P.Y.: Multi-dimensional design optimisation of laminated structures using an improved genetic algorithm. Compos. Struct. 54, 349–54 (2001)

    Article  Google Scholar 

  19. Nagendra, S., Jestin, D., Gurdal, Z., Haftka, R.T., Watson, L.T.: Improved genetic algorithm for the design of stiffened composite panels. Comput. Struct. 58(3), 543–55 (1996)

    Article  Google Scholar 

  20. Park, C.H., Lee, W.I., Han, W.S., Vautrin, A.: Simultaneous optimization of composite structures considering mechanical performances and manufacturing cost. Compos. Struct. 65, 117–127 (2004)

    Article  Google Scholar 

  21. Cossalter, V.: Cinematica e Dinamica della Motocicletta. Edizioni Progetto, Padova (2001)

    Google Scholar 

  22. Abaqus® 6.10 documentation. 2010. Dassault Systèmes Simulia Corp., Providence, RI, USA (2010)

  23. Ferret, B., Anduze, M., Nardari, C.: Metal inserts in structural composite materials manufactured by RTM. Compos. Part A 29(5–6), 693–700 (1998)

    Article  Google Scholar 

  24. Department of Defense Handbook: Composite Materials Handbook, Vol. 2. Polymet Matrix Composites Material Properties, MIL-HDBK-17-2E. Department of Defense, USA (1999)

  25. Lehmann, U., Michaeli, W.: Cores lead to an automated production of hollow composite parts in resin transfer moulding. Compos. Part A 29(7), 803–810 (1998)

    Article  Google Scholar 

  26. Marsh, G.: Augmenting core values. J. Reinf. Plast. 51(5), 34–38 (2007)

    Article  Google Scholar 

  27. Stewart, R.: Sandwich structures deliver core benefits. J. Reinf. Plast. 54(4), 32–37 (2010)

    Article  Google Scholar 

  28. ArmaFROM PET AC Technical Data. http://www.armacell-foam-cores.com/ . Accessed 24 July 2011

  29. Nexus: User Manuals – Keywords. iChrome Ltd. Bristol (2011)

  30. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. - TEC 6(2), 182–197 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This research activity was carried out within the FIRB project “Potenziamento e sviluppo dell’industria motoristica incluse le due ruote con motori a basso consumo e basso impatto ambientale”, founded by the Italian Ministry of Research (PNR 2005-2007/DM N. 1028/Ric). The authors would like to thank Prof. Luca Di Landro for his precious support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Airoldi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Airoldi, A., Bertoli, S., Lanzi, L. et al. Design of a Motorcycle Composite Swing-Arm by Means of Multi-objective Optimisation. Appl Compos Mater 19, 599–618 (2012). https://doi.org/10.1007/s10443-011-9227-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-011-9227-6

Keywords

Navigation