Skip to main content
Log in

PLLA/Flax Mat/Balsa Bio-Sandwich—Environmental Impact and Simplified Life Cycle Analysis

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In the present paper the environmental impact of biocomposites and bio-sandwich materials production are evaluated, using simplified Life Cycle Analysis (LCA) following the procedure recommended in the ISO 14044 standard. The materials are dimensioned and evaluated by comparing with reference materials, glass mat reinforced unsatured polyester and glass mat/unsatured polyester/balsa sandwich. The results indicate that bio-sandwich materials are very attractive in terms environmental impact. However further improvements in biocomposite and bio-sandwich mechanical strength are necessary if they are to be used in transport application compared to glass/polyester and glass/polyester/balsa sandwich.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bodros, E., Pillin, I., Montrelay, N., Baley, C.: Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications? Compos. Sci. Technol. 67(3–4), 462–470 (2007)

    Article  CAS  Google Scholar 

  2. Le Duigou, A., Pillin, I., Bourmaud, A., Davies, P., Baley, C.: Effect of recycling on mechanical behaviour of biocompostable flax/poly(l-lactide) composites. Compos. A 39(9), 1471–1478 (2008)

    Article  Google Scholar 

  3. Baley, C., Grohens, Y., Pillin, I.: Etat de l’art sur les matériaux composites biodégradables. Revue des composites et des matéraiux avancés 14, 135–166 (2004)

    Article  CAS  Google Scholar 

  4. ISO-14044: Environmental management. Life cycle assessment. Requirements and guidelines (2006)

  5. Le Duigou, A., Davies, P., Baley, C.: Environmental impact analysis of the production of flax fibres to be used as composite material reinforcement. J. Biobased Mater. Bioenergy 5, 1–13 (2011)

    Article  Google Scholar 

  6. Diener, D., Siehler, U.: Ökologischer Vergleich von NMT- und GMT-Bauteilen. Angew. Makromol. Chem. 272(1), 1–4 (1999)

    Article  CAS  Google Scholar 

  7. Corbière-Nicollier, T., Gfeller Laban, B., Lundquist, L., Leterrier, Y., Månson, J.-A.E., Jolliet, O.: Life cycle assessment of biofibres replacing glass fibres as reinforcement in plastics. Resour. Conservative Recycling 33(4), 267–287 (2001)

    Article  Google Scholar 

  8. Pervaiz, M., Sain, M.M.: Carbon storage potential in natural fiber composites. Resour. Conserv. Recycl. 39(4), 325–340 (2003)

    Article  Google Scholar 

  9. Trouy-Triboulot, M., Triboulot, P.: Matériau bois- structure et caractéristiques. Techniques de l'ingénieur. C 925: 1-26

  10. Vink, E.T.H., Rábago, K.R., Glassner, D.A., Gruber, P.R.: Applications of life cycle assessment to NatureWorks(TM) polylactide (PLA) production. Polym. Degrad. Stab. 80(3), 403–419 (2003)

    Article  CAS  Google Scholar 

  11. Vink, E., Glassner, D., Kolstad, J., Wooley, R., O’Connor, R.: The eco-profiles for current and near-future Naturworks polylactide (PLA) production. Ind. Biotechnol. 3(1), 58–81 (2007)

    Article  CAS  Google Scholar 

  12. Vink, E., Rábago, K., O’connor, R., Gruber, P.: The sustainability of Natureworks Polylactide Polymers and Ingeo Polylactide fibers: an update of the future. Macromol. Biosci. 4, 551–564 (2004)

    Article  CAS  Google Scholar 

  13. Vink, E., Davies, S., Kolstad, J.: The Eco-porfile for current Ingeo polylactide production. Ind. Biotechnol. 6(4), 212–224 (2010)

    Article  CAS  Google Scholar 

  14. Detzel, A., Krüger, M.: Life Cycle Assessment of Polylactide (PLA)—A comparison of food packaging made from NatureWorks® PLA and alternative materials. (2006) http://www.natureworksllc.com/news-and-events/press-releases/2007/7-2-07-new-eco-profile.aspx

  15. Madival, S., Auras, R., Singh, S.P., Narayan, R.: Assessment of the environmental profile of PLA, PET and PS clamshell containers using LCA methodology. J. Cleaner Prod. 17(13), 1183–1194 (2009)

    Article  CAS  Google Scholar 

  16. Kim, S., Dale, B., Drzal, L., Misra, M.: Life cycle assessment of kenaf fiber reinforced biocomposite. J. Biobased Mater. Bioenergy 2, 85–93 (2008)

    Article  Google Scholar 

  17. Duflou, J.R., De Moor, J., Verpoest, I., Dewulf, W.: Environmental impact analysis of composite use in car manufacturing. CIRP Ann. Manuf. Technol. 58(1), 9–12 (2009)

    Article  Google Scholar 

  18. Ning, H., Janowski, G.M., Vaidya, U.K., Husman, G.: Thermoplastic sandwich structure design and manufacturing for the body panel of mass transit vehicle. Compos. Struct. 80(1), 82–91 (2007)

    Article  Google Scholar 

  19. Le Duigou, A., Deux, J-M., Davies, P., Baley, C.: PLLA/flax mat/balsa bio-sandwich manufacture and mechanical properties. 1–18 (2010)

  20. Labouze, E., Le Guern, Y., Petiot, C.: Analyse de cycle de vie comparée d’une chemise en lin et d’une chemise en coton. Bio intelligence Service Report. (2007)

  21. Le Duigou, A., Davies, P., Baley, C.: Seawater ageing of Flax/PLLA biocomposites. Polym. Degrad. Stab. 94, 1151–1162 (2009)

    Article  Google Scholar 

  22. Baley, C., Bodros, E.: Biocomposite à matrice PLLA renforcés par des mats de lin. Rev. Compos. Mater. Av. 16(1), 129–139 (2006)

    CAS  Google Scholar 

  23. Kellenberger, D., Althaus, H., Kunniger, T., Jungbluth, N.: Life cycle inventories of building products, Data V1.1. 7, 427–453 (2004)

    Google Scholar 

  24. Rennerwaal, H.: IdeMAT 2001. (2001)

  25. Perrot, Y.: Influence des propriétés de la matrice sur le comportement mécanique de matériaux composites verre/polyester utilisés en construction navales de plaisance, Lorient. (2006)

  26. Lundie, S., Ciroth, A., Huppes, G.: Inventory methods in LCA: Towards consistency and improvement.Final report. UNEP-SETAC Life Cycle Initiative. (2007)

  27. Boutin, M., Flamin, C., Quinton, S., Gosse, G.: Etude des caractéristiques envionnementales du chanvre par l’analyse de son cycle de vie available at http://agriculture.gouv.fr/IMG/pdf/chanvre_rapport_final_d235d.pdf (2005)

  28. Sharma, H.S.S., Van Sumere: The biology and processing of flax. In: C.F. (eds.). M Publications, Northern Ireland (1992), 576

  29. Frischknecht, R., Jungbluth, N., Althaus, H., Doka, G., Dones, R., Heck, T., Hellweg, S., Hichier, R., Nemecek, T., Rebitzer, G., Spielman, M., Wernet, G.: Overview and methodology.final report EcoInvent Data V2.0 N°1, Dubendorf (2007)

  30. Vidal, R., Martínez, P., Mulet, E., González, R., López-Mesa, B., Fowler, P., Fang, J.: Environmental assessment of biodegradable multilayer film derived from carbohydrate polymers. J. Polym. Environ. 15(3), 159–168 (2007)

    Article  CAS  Google Scholar 

  31. Guinée, J., Gorée, M., Heijungs, R., Huppes, G., Kleijn, R., de Koenig, A.: Life cycle assessment: An operational guide to the ISO standards. Final report; Centre of environmental Science. Leiden University. (2001)

  32. Vidal, R., Martínez, P., Garraín, D.: Life cycle assessment of composite materials made of recycled thermoplastics combined with rice husks and cotton linters. Int. J. Life Cycle Assess. 14(1), 73–82 (2009)

    Article  CAS  Google Scholar 

  33. González-García, S., Hospido, A., Feijoo, G., Moreira, M.T.: Life cycle assessment of raw materials for non-wood pulp mills: Hemp and flax. Resour. Conserv. Recycl. 54(11), 923–930 (2010)

    Article  Google Scholar 

  34. Frischknecht, R., Jungbluth, N., Althaus, H., Bauer, C., Doka, G., Dones, R., Hischier, R., Hellweg, S., Humbert, S., Köllner, T., Loerincik, Y., Margni, M., Nemecek, T.: Implementation of life cycle impact assessment methods-ecoinvent report v2.0 No. 3, Dübendorf, Switzerland (2007)

  35. Pre: SIMAPRO 7.18 Pre consultants B.V. Printerweg 18, 3821. AD Amersfoort, The netherland (2008)

  36. ASTM-C393: Standard test method for Flexural properties of sandwich constructions. ASTM (2000)

  37. Takahashi, J.: In JEC show Asia-automotive & mass transportation. Singapore (2009)

  38. Dissanakaye, N., Summerscales, J., Grove, S., Singh, M.: Life cycle assessment of flax fibre for the reinforcement of composites. J. Biobased Mater. Bioenergy 3, 1–4 (2009)

    Article  Google Scholar 

  39. Dissanayake, N., Summerscales, J., Grove, S., Singh, S.: Energy use in the production of flax fiber for the reinforcement of composites. J. Nat. Fibers 6(4), 331–346 (2009)

    Article  CAS  Google Scholar 

  40. Zah, R., Hischier, R., Leão, A.L., Braun, I.: Curauá fibers in the automobile industry—a sustainability assessment. J. Cleaner Prod. 15(11–12), 1032–1040 (2007)

    Article  Google Scholar 

  41. Recycled Organics Unit TUoNSW, Life cycle inventory and life cycle assessment for windrow composting systems, ed. 9 I.: Department of Environment and Conservation NSW. (2006)

  42. ISO-178: Matières plastiques-Détermination des caractéristiques de flexion des matières plastiques rigides; Norme internationale ISO (1975)

  43. LTD AcP: Technical datasheet Baltek SB100; www.atlcomposites.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Le Duigou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Duigou, A., Deux, JM., Davies, P. et al. PLLA/Flax Mat/Balsa Bio-Sandwich—Environmental Impact and Simplified Life Cycle Analysis. Appl Compos Mater 19, 363–378 (2012). https://doi.org/10.1007/s10443-011-9201-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-011-9201-3

Keyword

Navigation