Skip to main content
Log in

Interpenetrating Microstructure and Properties of Si3N4/Al–Mg Composites Fabricated by Pressureless Infiltration

  • Original Paper
  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Si3N4/Al–Mg composites based on Al–Mg alloy reinforced by ceramic interpenetrating network structure were fabricated via pressureless infiltration technology. Infiltration temperature and infiltration time are the key parameters distinctly effecting on infiltration processes. Moreover, the increasing of Mg content (2–8 wt.%) resulted in an increased amount of infiltration. Microstructural characterization of the composites reveals a special topology of skeleton and good integrity of metal/ceramic interface. The presence of second reinforced phase results in a significant increase in 0.2% offset yield and ultimate tensile strength of composites materials. However, when the volume fraction of reinforcement is large than 6%, there are a distinctly reduction of strength. The presence of additional secondary brittle phase in matrix results in the reduction in ductility and increase in hardness of 3-DNRMMCs. The failure features as cracking and void in reinforcement, interface cracking and interface debonding as well as matrix damage result in the decreases of fracture toughness. With the increases of volume fraction of reinforcement, 3-DRMMC exhibits excellent wear-resistance property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mohamed, N.S., Ganesan, N.: Comparison of beam and plate theories for free vibrations of metal matrix composite pre-twisted blades. J. Sound Vib. 189(2), 149–160 (1996)

    Article  Google Scholar 

  2. Xu, Z.R., Chawla, K.K., Wolfenden, A., Neuman, A., Liggett, G.M., Chawla, N.: Stiffness loss and density decrease due to thermal cycling in an alumina fiber/magnesium alloy composites. Mater. Sci. Eng. A 203, 75–80 (1995)

    Article  Google Scholar 

  3. Geng, L., Li, A.B., Meng, Q.Y.: Experimental and numerical studies of the effect of whisker misalignment on the hot compressive deformation behavior of the metal matrix composites. Mater. Sci. Eng. A 386(1–2), 212–221 (2004)

    Google Scholar 

  4. Wang, H.Y., Jiang, Q.C., Zhao, Y.Q.: Fabrication of TiB2 and TiB2–TiC particulates reinforced magnesium matrix composites. Mater. Sci. Eng. A 372, 109–114 (2004)

    Article  CAS  Google Scholar 

  5. Mattern, A., Huchler, B., Staudenecker, D., Oberacker, R., Nagel, A., Hoffmann, M.J.: Preparation of interpenetrating ceramic–metal composites. J. Eur. Ceram. Soc. 24, 3399–3408 (2004)

    Article  CAS  Google Scholar 

  6. Zhou, W., Hu, W., Zhang, D.: Study on the making of metal-matrix interpenetrating phase composites. Scr. Mater. 39(12), 1743–1748 (1998)

    Article  Google Scholar 

  7. Zeschkya, J., Goetz-Neunhoeffer, F., Neubauer, J., Jason Lo, S.H., Kummer, B., Scheffler, M., Greil, P.: Preceramic polymer derived cellular ceramics. Compos. Sci. Technol. 63, 2361–2370 (2003)

    Article  CAS  Google Scholar 

  8. Konopka, K., Olszówka-Myalska A., Szafran, M.: Ceramic–metal composites with an interpenetrating network. Mater. Chem. Phys. 81, 329–332 (2003)

    Article  CAS  Google Scholar 

  9. Lu, L., Lai, M.O., Froyen, L.: Structure and properties of Mg metal–metal composite. Key Eng. Mater. 230(2), 287–290 (2002)

    Article  Google Scholar 

  10. Lange, F.F., Miller, K.T.: Open-cell, low-density ceramics fabricated from reticulated polymer substrates. Adv. Ceram. Mater. 2, 827–831 (1987)

    CAS  Google Scholar 

  11. Zeschky, J., Goetz-Neunhoeffer, F., Neubauer, J., Jason Lo S.H., Kummer, B., Scheffler, M., Greil, P.: Preceramic polymer derived cellular ceramics. Compos. Sci. Technol. 63, 2361–2370 (2003)

    Article  CAS  Google Scholar 

  12. Hashim, J., Looney, L., Hashmi, M.S.J.: Metal matrix composites: Production by the stir casting method. J. Mater. Process. Technol. 92–93, 1–7 (1999)

    Article  Google Scholar 

  13. Mortensen, A.: Mechanical and Physical Behaviour of Metals and Ceramic Compounds. p. 141. Riso National Laboratory, Roskilde, Denmark (1988)

    Google Scholar 

  14. Jiang, Q.C., Wang, H.Y., Guan, Q.F., et al.: Effect of the temperature of molten magnesium on the thermal explosion synthesis reaction of Al–Ti–C system for fabricating TiC/Mg composite[J]. Adv. Eng. Mater. 10, 722–725 (2003)

    Article  CAS  Google Scholar 

  15. Ho, K.F., Gupta, M., Srivatsan, T.S.: The mechanical behavior of magnesium alloy AZ91 reinforced with fine copper particulates. Mater. Sci. Eng. A 369, 302–308 (2004)

    Article  CAS  Google Scholar 

  16. Ames, W., Alpas, A.T.: Wear mechanisms in hybrid composites of graphite-20 Pct SiC in A356 aluminum alloy (Al-7 Pct Si-0.3 Pct Mg). Met. Mater. Trans. A 26A, 85–98 (1995)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Shouren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shouren, W., Haoran, G., Jingchun, Z. et al. Interpenetrating Microstructure and Properties of Si3N4/Al–Mg Composites Fabricated by Pressureless Infiltration. Appl Compos Mater 13, 115–126 (2006). https://doi.org/10.1007/s10443-006-9015-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-006-9015-x

Key words

Navigation