Skip to main content
Log in

Convergence and Optimization Results for a History-Dependent Variational Problem

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

We consider a mixed variational problem in real Hilbert spaces, defined on the unbounded interval of time \([0,+\infty)\) and governed by a history-dependent operator. We state the unique solvability of the problem, which follows from a general existence and uniqueness result obtained in Sofonea and Matei (J. Glob. Optim. 61:591–614, 2015). Then, we state and prove a general convergence result. The proof is based on arguments of monotonicity, compactness, lower semicontinuity and Mosco convergence. Finally, we consider a general optimization problem for which we prove the existence of minimizers. The mathematical tools developed in this paper are useful in the analysis of a large class of nonlinear boundary value problems which, in a weak formulation, lead to history-dependent mixed variational problems. To provide an example, we illustrate our abstract results in the study of a frictional contact problem for viscoelastic materials with long memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amdouni, S., Hild, P., Lleras, V., Moakher, M., Renard, Y.: A stabilized Lagrange multiplier method for the enriched finite-element approximation of contact problems of cracked elastic bodies. Modél. Math. Anal. Numér. 46, 813–839 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barboteu, M., Matei, A., Sofonea, M.: Analysis of quasistatic viscoplastic contact problems with normal compliance. Q. J. Mech. Appl. Math. 65, 555–579 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barboteu, M., Matei, A., Sofonea, M.: On the behavior of the solution of a viscoplastic contact problem. Q. Appl. Math. 72, 625–647 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Céa, J.: Optimization. Théorie et Algorithmes. Dunod, Paris (1971)

    MATH  Google Scholar 

  5. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. Classics in Applied Mathematics, vol. 28. SIAM, Philadelphia (1999)

    Book  MATH  Google Scholar 

  6. Han, W., Sofonea, M.: Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity. Studies in Advanced Mathematics, vol. 30. American Mathematical Society/International Press, Providence/Somerville (2002)

    Book  MATH  Google Scholar 

  7. Haslinger, J., Hlaváček, I., Nečas, J.: Numerical methods for unilateral problems in solid mechanics. In: Ciarlet, P.G., Lions, J.-L. (eds.) Handbook of Numerical Analysis, Vol. IV, pp. 313–485. North-Holland, Amsterdam (1996)

    MATH  Google Scholar 

  8. Hlaváček, I., Haslinger, J., Nečas, J., Lovíšek, J.: Solution of Variational Inequalities in Mechanics. Springer, New York (1988)

    Book  MATH  Google Scholar 

  9. Hild, P., Renard, Y.: A stabilized Lagrange multiplier method for the finite element approximation of contact problems in elastostatics. Numer. Math. 115, 101–129 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hüeber, S., Matei, A., Wohlmuth, B.: Efficient algorithms for problems with friction. SIAM J. Sci. Comput. 29, 70–92 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hüeber, S., Wohlmuth, B.: An optimal a priori error estimate for nonlinear multibody contact problems. SIAM J. Numer. Anal. 43, 156–173 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hüeber, S., Matei, A., Wohlmuth, B.: A mixed variational formulation and an optimal a priori error estimate for a frictional contact problem in elasto-piezoelectricity. Bull. Math. Soc. Math. Roum. 48, 209–232 (2005)

    MathSciNet  MATH  Google Scholar 

  13. Kurdila, A.J., Zabarankin, M.: Convex Functional Analysis. Birkhäuser, Basel (2005)

    MATH  Google Scholar 

  14. Lions, J.-L., Glowinski, R., Trémolières, R.: Numerical Analysis of Variational Inequalities. North-Holland, Amsterdam (1981)

    MATH  Google Scholar 

  15. Matei, A., Ciurcea, R.: Contact problems for nonlinearly elastic materials: weak solvability involving dual Lagrange multipliers. ANZIAM J. 52, 160–178 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Matei, A., Ciurcea, R.: Weak solvability for a class of contact problems. Ann. Acad. Rom. Sci. Ser. Math. Appl. 2, 25–44 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Matei, A., Ciurcea, R.: Weak solutions for contact problems involving viscoelastic materials with long memory. Math. Mech. Solids 16, 393–405 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Matei, A.: Weak solvability via Lagrange multipliers for two frictional contact models. Ann. Univ. Buchar. Math. Ser. 4(LXII), 179–191 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Mosco, U.: Convergence of convex sets and of solutions of variational inequalities. Adv. Math. 3, 510–585 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shillor, M., Sofonea, M., Telega, J.J.: Models and Analysis of Quasistatic Contact. Lecture Notes in Physics, vol. 655. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  21. Sofonea, M.: Optimal control of variational-hemivariational inequalities. Appl. Math. Optim. 79(3), 621–646 (2019). https://doi.org/10.1007/s00245-017-9450-0

    Article  MathSciNet  MATH  Google Scholar 

  22. Sofonea, M., Avramescu, C., Matei, A.: A fixed point result with applications in the study of viscoplastic frictionless contact problems. Commun. Pure Appl. Anal. 7, 645–658 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sofonea, M., Matei, A.: History-dependent quasivariational inequalities arising in contact mechanics. Eur. J. Appl. Math. 22, 471–491 (2011)

    Article  MATH  Google Scholar 

  24. Sofonea, M., Matei, A.: Mathematical Models in Contact Mechanics. London Mathematical Society Lecture Note Series, vol. 398. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  25. Sofonea, M., Migórski, S.: Variational-Hemivariational Inequalities with Applications. Pure and Applied Mathematics. Chapman & Hall/CRC Press, Boca Raton/London (2018)

    MATH  Google Scholar 

  26. Sofonea, M., Matei, A.: History-dependent mixed variational problems in contact mechanics. J. Glob. Optim. 61, 591–614 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sofonea, M., Matei, A., Xiao, Y.: Optimal control for a class of mixed variational problem. Z. Angew. Math. Phys. 70, 127 (2019), 17 pp. https://doi.org/10.1007/s00033-019-1173-4.

    Article  MathSciNet  MATH  Google Scholar 

  28. Sofonea, M., Xiao, Y.B., Couderc, M.: Optimization problems for a viscoelastic frictional contact problem with unilateral constraints. Nonlinear Anal. Ser. B Real World Appl. 50, 86–103 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xiao, Y.B., Sofonea, M.: On the optimal control of variational-hemivariational inequalities. J. Math. Anal. Appl. 475, 364–384 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xiao, Y.B., Sofonea, M.: Generalized penalty method for elliptic variational-hemivariational inequalities. Appl. Math. Optim. (2019, to appear). https://doi.org/10.1007/s00245-019-09563-4

    Article  Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Grant Agreement No. 823731 CONMECH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mircea Sofonea.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sofonea, M., Matei, A. Convergence and Optimization Results for a History-Dependent Variational Problem. Acta Appl Math 169, 157–182 (2020). https://doi.org/10.1007/s10440-019-00293-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-019-00293-x

Keywords

Mathematics Subject Classification (2000)

Navigation