Skip to main content
Log in

Eigenvectors of Tensors—A Primer

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

We give an introduction to the theory and to some applications of eigenvectors of tensors (in other words, invariant one-dimensional subspaces of homogeneous polynomial maps), including a review of some concepts that are useful for their discussion. The intent is to give practitioners an overview of fundamental notions, results and techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Börnsen, J.-P., van de Ven, A.E.M.: Tangent developable orbit space of an octupole. Preprint (2018). arXiv:1807.04817

  2. Cartwright, D., Sturmfels, B.: The number of eigenvalues of a tensor. Linear Algebra Appl. 438, 942–952 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, Y., Qi, L., Virga, E.G.: Octupolar tensors for liquid crystals. J. Phys. A 51(2), 025206 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cox, D.A., Little, J., O’Shea, D.: Using Algebraic Geometry. Springer, New York (2004)

    MATH  Google Scholar 

  5. Decker, W., Lossen, Ch.: Computing in Algebraic Geometry. Algorithms and Computation in Mathematics, vol. 16. Springer, Berlin (2006)

    MATH  Google Scholar 

  6. Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  7. Dumortier, F., Llibre, J., Artes, J.: Qualitative Theory of Planar Differential Systems. Springer, Berlin (2006)

    MATH  Google Scholar 

  8. Gaeta, G., Virga, E.G.: Octupolar order in three dimensions. Eur. Phys. J. E 39, 113 (2016)

    Article  Google Scholar 

  9. Gantmacher, F.R.: Applications of the Theory of Matrices. Dover, Mineola (2005)

    Google Scholar 

  10. Kaplan, J.L., Yorke, J.A.: Nonassociative, real algebras and quadratic differential equations. Nonlinear Anal. 3, 49–51 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  11. Milnor, J.W.: Topology from the Differentiable Viewpoint. Princeton University Press, Princeton (1997)

    MATH  Google Scholar 

  12. Perko, L.: Differential Equations and Dynamical Systems. Springer, New York (1991)

    Book  MATH  Google Scholar 

  13. Pumplün, S., Walcher, S.: On the zeros of polynomials over quaternions. Commun. Algebra 30, 4007–4018 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Oeding, L., Robeva, E., Sturmfels, B.: Decomposing tensors into frames. Adv. Appl. Math. 73, 125–153 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Qi, L.: Eigenvalues of a supersymmetric tensor. J. Symb. Comput. 40, 1302–1324 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Qi, L.: Eigenvalues and invariants of tensors. J. Math. Anal. Appl. 325, 1363–1377 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Qi, L.: Transposes, L-eigenvalues and invariants of third order tensors (2017). arXiv:1704.01327. Preprint

  18. Qi, L., Chen, H., Chen, Y.: Tensor Eigenvalues and Their Applications. Springer, Singapore (2018)

    Book  MATH  Google Scholar 

  19. Röhrl, H.: A theorem on nonassociative algebras and its application to differential equations. Manuscr. Math. 21, 181–187 (1977)

    Article  MATH  Google Scholar 

  20. Röhrl, H.: On the zeros of polynomials over arbitrary finite dimensional algebras. Manuscr. Math. 25, 359–390 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  21. Röhrl, H., Walcher, S.: Projections of polynomial vector fields and the Poincaré sphere. J. Differ. Equ. 139, 22–40 (1997)

    Article  MATH  Google Scholar 

  22. Shafarevich, I.R.: Basic Algebraic Geometry. Springer, Berlin (1977)

    MATH  Google Scholar 

  23. Virga, E.G.: Octupolar order in two dimensions. Eur. Phys. J. E 38, 63 (2015)

    Article  Google Scholar 

  24. Walcher, S.: Algebras and Differential Equations. Hadronic Press, Palm Harbor (1991)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Walcher.

Appendix

Appendix

1.1 7.1 Some Linear Algebra

For the sake of completeness we prove the following commonly known fact: For real \(n\times n\) matrices \(A\) and \(B\) one has

$$ \det \begin{pmatrix} A&-B \\ B&A \end{pmatrix} \geq 0. $$

First assume that \(A\) is invertible. Then

$$ \begin{pmatrix} A&-B \\ B&A \end{pmatrix} = \begin{pmatrix} A & 0 \\ 0&A \end{pmatrix} \cdot \begin{pmatrix} I_{n} &0 \\ C & I_{n} \end{pmatrix} \cdot \begin{pmatrix} I_{n} &- C \\ 0 & I_{n}+C^{2} \end{pmatrix} $$

where \(I_{n}\) denotes the \(n\times n\) identity matrix and \(C=A^{-1}B\). The determinant of the first factor is equal to \((\det A)^{2}\), hence \(>0\); the second factor has determinant one, and for the third one we get

$$ \det \bigl(I_{n}+C^{2}\bigr)=\det (I_{n}+ iC) \cdot \overline{\det (I_{n}+iC)}>0. $$

In the case of non-invertible \(A\) apply the argument to \(\rho I_{n}+A\) for small \(\rho >0\) and use continuity as \(\rho \to 0\).

To apply this to real representations of complex linear maps, let \(w=x+iy\in \mathbb{C}^{n}\) with \(x,\,y\in \mathbb{R}^{n}\), and write a linear map \(L\) from \(\mathbb{C}^{n}\) to \(\mathbb{C}^{n}\) in the form

$$ L= A+iB; \quad L(x+iy)= (Ax-By ) + i (Bx+Ay ); $$

hence \(L\) has a real matrix representation

$$ \begin{pmatrix} A&-B \\ B&A \end{pmatrix} . $$

1.2 7.2 A Hybrid Proof of Bezout’s Theorem

This proof uses Proposition 1 as an algebraic tool, and properties of the Brouwer degree on the analytic side. It is not central to the topic of the present paper but its inclusion is unproblematic and it may be seen as informative anyway.

By Proposition 1, in the complex affine space of structure coefficients, the coefficient sets which correspond to homogeneous polynomial maps \(Q\) with a nilpotent (\(v\neq0\) and \(Q(v)=0\)) form the hypersurface defined by the resultant. This hypersurface has real codimension two, hence any two points in its complement can be connected by a continuous curve. These points correspond to two homogeneous polynomial maps without nilpotents. By homotopy invariance they have the same Brouwer degree. To summarize, any two homogeneous polynomial maps of degree \(m\) without nilpotents have the same degree. For the special map

$$ \widetilde{Q}:\,\mathbb{C}^{n}\to \mathbb{C}^{n},\qquad x \mapsto \begin{pmatrix} x_{1}^{m} \\ \vdots \\ x_{n}^{m} \end{pmatrix} $$

one easily verifies that the number of solutions of \(\widetilde{Q}(x)=(1, \ldots ,1)^{\operatorname{tr}}\) is equal to \(m^{n}\), with each solution having multiplicity one.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walcher, S. Eigenvectors of Tensors—A Primer. Acta Appl Math 162, 165–183 (2019). https://doi.org/10.1007/s10440-018-0225-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-018-0225-7

Keywords

Mathematics Subject Classification (2010)

Navigation