Skip to main content
Log in

Alterations in Physical Demands During Virtual/Augmented Reality-Based Tasks: A Systematic Review

  • Review
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The digital world has recently experienced a swift rise in worldwide popularity due to Virtual (VR) and Augmented Reality (AR) devices. However, concrete evidence about the effects of VR/AR devices on the physical workload imposed on the human body is lacking. We reviewed 27 articles that evaluated the physical impact of VR/AR-based tasks on the users using biomechanical sensing equipment and subjective tools. Findings revealed that movement and muscle demands (neck and shoulder) varied in seven and five studies while using VR, while in four and three studies during AR use, respectively, compared to traditional methods. User discomfort was also found in seven VR and three AR studies. Outcomes indicate that interface and interaction design, precisely target locations (gestures, viewing), design of virtual elements, and device type (location of CG as in Head-Mounted Displays) influence these alterations in neck and shoulder regions. Recommendations based on the review include developing comfortable reach envelopes for gestures, improving wearability, and studying temporal effects of repetitive movements (such as effects on fatigue and stability). Finally, a guideline is provided to assist researchers in conducting effective evaluations. The presented findings from this review could benefit designers/evaluations working towards developing more effective VR/AR products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aromaa, S., A. Väätänen, E. Kaasinen, M. Uimonen, and S. Siltanen. Human factors and ergonomics evaluation of a tablet based augmented reality system in maintenance work. ACM Int. Conf. Proc. Ser. 2018, pp. 118–125. https://doi.org/10.1145/3275116.3275125.

  2. Astrologo, A. N. The effects of head-mounted displays (HMDS) and their inertias on cervical spine loading. (Doctoral dissertation, Northeastern University).

  3. Ban, Y., T. Narumi, T. Fujii, S. Sakurai, J. Imura, T. Tanikawa, and M. Hirose. Augmented endurance: controlling fatigue while handling objects by affecting weight perception using augmented reality. Conf. Hum. Factors Comput. Syst. - Proc. 2013, pp. 69–77. https://doi.org/10.1145/2470654.2470665.

  4. Bani Hani, D., R. Huangfu, R. Sesek, M. C. Schall, G. A. Davis, and S. Gallagher. Development and validation of a cumulative exposure shoulder risk assessment tool based on fatigue failure theory. Ergonomics. 64:39–54, 2021.

    Article  PubMed  Google Scholar 

  5. Boston Consulting Group. Augmented and virtual reality. 2022. https://www.bcg.com/de-at/capabilities/digital-technology-data/emerging-technologies/augmented-virtual-reality.

  6. Bovim, L. P., B. E. Gjesdal, S. Mæland, M. K. Aaslund, and B. Bogen. The impact of motor task and environmental constraints on gait patterns during treadmill walking in a fully immersive virtual environment. Gait Posture. 77:243–249, 2020.

    Article  PubMed  Google Scholar 

  7. Braly, A. M., B. Nuernberger, and S. Y. Kim. Augmented reality improves procedural work on an international space station science instrument. Hum. Factors. 61:866–878, 2019.

    Article  PubMed  Google Scholar 

  8. Cano Porras, D., H. Sharon, R. Inzelberg, Y. Ziv-Ner, G. Zeilig, and M. Plotnik. Advanced virtual reality-based rehabilitation of balance and gait in clinical practice. Ther. Adv. Chronic Dis. 10:1–16, 2019.

    Article  Google Scholar 

  9. Chan, Z. Y. S., A. J. C. MacPhail, I. P. H. Au, J. H. Zhang, B. M. F. Lam, R. Ferber, and R. T. H. Cheung. Walking with head-mounted virtual and augmented reality devices: effects on position control and gait biomechanics. PLoS ONE. 14:1–14, 2019.

    Article  Google Scholar 

  10. Chang, J., B. Choi, A. Tjolleng, and K. Jung. Effects of button position on a soft keyboard: muscle activity, touch time, and discomfort in two-thumb text entry. Appl. Ergon. 60:282–292, 2017.

    Article  PubMed  Google Scholar 

  11. Chateauroux, E., and X. Wang. Effects of age, gender, and target location on seated reach capacity and posture. Hum. Factors. 50:211–226, 2008.

    Article  PubMed  Google Scholar 

  12. Chattha, U. A., U. I. Janjua, F. Anwar, T. M. Madni, M. F. Cheema, and S. I. Janjua. Motion sickness in virtual reality: an empirical evaluation. IEEE Access. 8:130486–130499, 2020.

    Article  Google Scholar 

  13. Chen, K. B., K. Ponto, R. D. Tredinnick, and R. G. Radwin. Virtual exertions: evoking the sense of exerting forces in virtual reality using gestures and muscle activity. Hum. Factors. 57:658–673, 2015.

    Article  PubMed  Google Scholar 

  14. Chen, K., and K. B. Chen. Task-oriented and imitation-oriented movements in virtual reality exercise performance and design. Hum. Factors. 2021. https://doi.org/10.1177/00187208211010100.

    Article  PubMed  Google Scholar 

  15. Chen, Y., X. Wang, and H. Xu. Human factors/ergonomics evaluation for virtual reality headsets: a review. CCF Trans. Pervasive Comput. Interact. 3:99–111, 2021.

    Article  Google Scholar 

  16. Chihara, T., and A. Seo. Evaluation of physical workload affected by mass and center of mass of head-mounted display. Appl. Ergon. 68:204–212, 2018.

    Article  PubMed  Google Scholar 

  17. del Cid, D. A., D. Larranaga, M. Leitao, R. L. Mosher, S. R. Berzenski, V. Gandhi, and S. A. Drew. Exploratory factor analysis and validity of the virtual reality symptom questionnaire and computer use survey. Ergonomics. 64:69–77, 2021.

    Article  PubMed  Google Scholar 

  18. Cifrek, M., V. Medved, S. Tonković, and S. Ostojić. Surface EMG based muscle fatigue evaluation in biomechanics. Clin. Biomech. 24:327–340, 2009.

    Article  Google Scholar 

  19. Cutolo, F., A. Meola, M. Carbone, S. Sinceri, F. Cagnazzo, E. Denaro, N. Esposito, M. Ferrari, and V. Ferrari. A new head-mounted display-based augmented reality system in neurosurgical oncology: a study on phantom. Comput. Assist. Surg. 22:39–53, 2017.

    Article  Google Scholar 

  20. Dolan, P., and M. A. Adams. Repetitive lifting tasks fatigue the back muscles and increase the bending moment acting on the lumbar spine. J. Biomech. 31:713–721, 1998.

    Article  CAS  PubMed  Google Scholar 

  21. Dube, T. J., and A. S. Arif. Text Entry in Virtual Reality: A Comprehensive Review of the Literature. Cham: Springer International Publishing, pp. 419–437, 2019.

    Google Scholar 

  22. Evans, E., K. E. Naugle, A. S. Kaleth, B. Arnold, and K. M. Naugle. Physical activity intensity, perceived exertion, and enjoyment during head-mounted display virtual reality games. Games Health J. 10:314–320, 2021.

    PubMed  Google Scholar 

  23. Faber, G. S., C. C. Chang, I. Kingma, J. T. Dennerlein, and J. H. van Dieën. Estimating 3D L5/S1 moments and ground reaction forces during trunk bending using a full-body ambulatory inertial motion capture system. J. Biomech. 49:904–912, 2016.

    Article  CAS  PubMed  Google Scholar 

  24. Falcão, C. S., and M. M. Soares. Ergonomics, usability and virtual reality: a review applied to consumer product. Adv. Usability Eval. Part II 2012, pp. 297–306. https://doi.org/10.1201/b12324-35.

  25. Fasulo, L., A. Naddeo, and N. Cappetti. A study of classroom seat (dis)comfort: relationships between body movements, center of pressure on the seat, and lower limbs’ sensations. Appl. Ergon. 74:233–240, 2019.

    Article  PubMed  Google Scholar 

  26. Folgheraiter, M., M. Jordan, S. Straube, A. Seeland, S. K. Kim, and E. A. Kirchner. Measuring the improvement of the interaction comfort of a wearable exoskeleton. Int. J. Soc. Robot. 4:285–302, 2012.

    Article  Google Scholar 

  27. Ghasemi, Y., A. Singh, M. Kim, A. Johnson, and H. Jeong. Effects of head-locked augmented reality on user’s performance and perceived workload. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 65:1094–1098, 2021.

    Article  Google Scholar 

  28. Harih, G., and B. Dolšak. Tool-handle design based on a digital human hand model. Int. J. Ind. Ergon. 43:288–295, 2013.

    Article  Google Scholar 

  29. Hellig, T., L. Johnen, A. Mertens, V. Nitsch, and C. Brandl. Prediction model of the effect of postural interactions on muscular activity and perceived exertion. Ergonomics. 63:593–606, 2020.

    Article  PubMed  Google Scholar 

  30. Higgins, J. P. T., J. Savović, M. J. Page, R. G. Elbers, and J. A. C. Sterne. Assessing risk of bias in a randomized trial. In: Cochrane Handbook for Systematic Reviews of Interventions, edited by J. P. T. Higgins, J. Thomas, J. Chandler, M. Cumpston, T. Li, M. J. Page, and V. A. Welch. Hoboken: Wiley, 2019, pp. 205–228.

    Chapter  Google Scholar 

  31. Hilt, S., T. Meunier, C. Pontonnier, and G. Dumont. Biomechanical fidelity of simulated pick-and-place tasks: impact of visual and haptic renderings. IEEE Trans. Haptics. 14:692–698, 2021.

    Article  PubMed  Google Scholar 

  32. Hou, L., X. Wang, and M. Truijens. Using augmented reality to facilitate piping assembly: an experiment-based evaluation. J. Comput. Civ. Eng. 2015. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000344.

    Article  Google Scholar 

  33. Ito, K., M. Tada, H. Ujike, and K. Hyodo. Effects of the weight and balance of head-mounted displays on physical load. Appl. Sci. 11:6802, 2021.

    Article  CAS  Google Scholar 

  34. Janeh, O., G. Bruder, F. Steinicke, A. Gulberti, and M. Poetter-Nerger. Analyses of gait parameters of younger and older adults during (non-)isometric virtual walking. IEEE Trans. Vis. Comput. Graph. 24:2663–2674, 2018.

    Article  PubMed  Google Scholar 

  35. Janeh, O., E. Langbehn, F. Steinicke, G. Bruder, A. Gulberti, and M. Poetter-Nerger. Walking in virtual reality: effects of manipulated visual self-motion on walking biomechanics. ACM Trans. Appl. Percept. 14:1–15, 2017.

    Article  Google Scholar 

  36. Mahendra, K. C., G. H. Virupaksha, and A. T. Gouda. Ergonomic analysis of welding operator postures. Int. J. Mech. Prod. Eng. 4:9–22, 2016.

    Google Scholar 

  37. Kaplan, A. D., J. Cruit, M. Endsley, S. M. Beers, B. D. Sawyer, and P. A. Hancock. The effects of virtual reality, augmented reality, and mixed reality as training enhancement methods: a meta-analysis. Hum. Factors. 63:706–726, 2021.

    Article  PubMed  Google Scholar 

  38. Kavanagh, S., A. Luxton-Reilly, and B. Wuensche. A systematic review of virtual reality in education—The Open University. Themes Sci. Technol. Educ. 10:85–119, 2017.

    Google Scholar 

  39. Kia, K., J. Hwang, H. Ishak, J. Wilson, I.-S. Kim, and J. Kim. Different system error rates in augmented reality interface affected cognitive stress. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 65:1087–1088, 2021.

    Article  Google Scholar 

  40. Kim, E., and G. Shin. Head rotation and muscle activity when conducting document editing tasks with a head-mounted display. Proc. Hum. Factors Ergon. Soc. 2:952–955, 2018.

    Google Scholar 

  41. Kim, E., and G. Shin. User discomfort while using a virtual reality headset as a personal viewing system for text-intensive office tasks. Ergonomics. 64:891–899, 2021.

    Article  PubMed  Google Scholar 

  42. Kim, H. K., J. Park, Y. Choi, and M. Choe. Virtual reality sickness questionnaire (VRSQ): motion sickness measurement index in a virtual reality environment. Appl. Ergon. 69:66–73, 2018.

    Article  PubMed  Google Scholar 

  43. Kim, J. H., H. Ari, C. Madasu, and J. Hwang. Evaluation of the biomechanical stress in the neck and shoulders during augmented reality interactions. Appl. Ergon.88:103175, 2020.

    Article  PubMed  Google Scholar 

  44. Kim, S., M. A. Nussbaum, and J. L. Gabbard. Influences of augmented reality head-worn display type and user interface design on performance and usability in simulated warehouse order picking. Appl. Ergon. 74:186–193, 2019.

    Article  PubMed  Google Scholar 

  45. Kim, W., and S. Xiong. ViewfinderVR: configurable viewfinder for selection of distant objects in VR. Virtual Real. 2022. https://doi.org/10.1007/s10055-022-00649-z.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Knight, J. F., D. D. Williams, T. N. Arvanitis, B. Chris, A. Wichmann, M. Wittkaemper, I. Herbst, and S. Sotiriou. Wearability assessment of a mobile augmented reality system. Proc. 11th Int. Conf. Virtual Syst. Multimed. 2005. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.8607&rep=rep1&type=pdf.

  47. Kuber, P. M., M. Abdollahi, M. M. Alemi, and E. Rashedi. A systematic review on evaluation strategies for field assessment of upper-body industrial exoskeletons: current practices and future trends. Ann. Biomed. Eng. 50:1203–1231, 2022.

    Article  PubMed  Google Scholar 

  48. Kuber, P. M., and E. Rashedi. Product ergonomics in industrial exoskeletons: potential enhancements for workforce safety and efficiency. Theor. Issues Ergon. Sci. 22:729–752, 2020.

    Article  Google Scholar 

  49. Kuber, P. M., and E. Rashedi. Designing a new forklift backrest: role of adjustability in improving operator comfort. Ergon. Des. 2021. https://doi.org/10.1177/10648046211002378.

    Article  Google Scholar 

  50. Kuber, P. M., and E. Rashedi. Investigating effects of adjustability features in the design of forklift backrests: a pilot study. Int. J. Hum. Factors Ergon. 9:350, 2022.

    Article  Google Scholar 

  51. Le, P., and W. S. Marras. Evaluating the low back biomechanics of three different office workstations: seated, standing, and perching. Appl. Ergon. 56:170–178, 2016.

    Article  PubMed  Google Scholar 

  52. Lee, M., M. Billinghurst, W. Baek, R. Green, and W. Woo. A usability study of multimodal input in an augmented reality environment. Virtual Real. 17:293–305, 2013.

    Article  Google Scholar 

  53. Lee, Y., D. Park, and Y. Min. The effect of wearing a head—mounted display on the boundaries of the cervical range of motion based on perceived comfort in a static posture. Virtual Real. 2022. https://doi.org/10.1007/s10055-022-00684-w.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lim, A. K., J. Ryu, H. M. Yoon, H. C. Yang, and S. Ki Kim. Ergonomic effects of medical augmented reality glasses in video-assisted surgery. Surg. Endosc. 36:988–998, 2022.

    Article  PubMed  Google Scholar 

  55. Lim, S., B. J. Martin, and M. K. Chung. The effects of target location on temporal coordination of the upper body during 3D seated reaches considering the range of motion. Int. J. Ind. Ergon. 34:395–405, 2004.

    Article  Google Scholar 

  56. Marklin, R. W., A. M. Toll, E. H. Bauman, J. J. Simmins, J. F. LaDisa, and R. Cooper. Do head-mounted augmented reality devices affect muscle activity and eye strain of utility workers who do procedural work? Studies of operators and manhole workers. Hum. Factors. 64:305–323, 2022.

    Article  PubMed  Google Scholar 

  57. Martelli, D., B. Xia, A. Prado, and S. K. Agrawal. Gait adaptations during overground walking and multidirectional oscillations of the visual field in a virtual reality headset. Gait Posture. 67:251–256, 2019.

    Article  PubMed  Google Scholar 

  58. Muñoz, A., X. Mahiques, J. E. Solanes, A. Martí, L. Gracia, and J. Tornero. Mixed reality-based user interface for quality control inspection of car body surfaces. J. Manuf. Syst. 53:75–92, 2019.

    Article  Google Scholar 

  59. Murray, M., B. Lange, S. S. Chreiteh, H. B. Olsen, B. R. Nørnberg, E. Boyle, K. Søgaard, and G. Sjøgaard. Neck and shoulder muscle activity and posture among helicopter pilots and crew-members during military helicopter flight. J. Electromyogr. Kinesiol. 27:10–17, 2016.

    Article  PubMed  Google Scholar 

  60. Nichols, S. Physical ergonomics of virtual environment use. Appl. Ergon. 30:79–90, 1999.

    Article  CAS  PubMed  Google Scholar 

  61. Oh, K., C. J. Stanley, D. L. Damiano, J. Kim, J. Yoon, and H. S. Park. Biomechanical evaluation of virtual reality-based turning on a self-paced linear treadmill. Gait Posture. 65:157–162, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Page, M. J., J. E. McKenzie, P. M. Bossuyt, I. Boutron, T. C. Hoffmann, C. D. Mulrow, L. Shamseer, J. M. Tetzlaff, E. A. Akl, S. E. Brennan, R. Chou, J. Glanville, J. M. Grimshaw, A. Hróbjartsson, M. M. Lalu, T. Li, E. W. Loder, E. Mayo-Wilson, S. McDonald, L. A. McGuinness, L. A. Stewart, J. Thomas, A. C. Tricco, V. A. Welch, P. Whiting, and D. Moher. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 372:2021, 2020.

    Google Scholar 

  63. Penumudi, S. A., V. A. Kuppam, J. H. Kim, and J. Hwang. The effects of target location on musculoskeletal load, task performance, and subjective discomfort during virtual reality interactions. Appl. Ergon.84:103010, 2020.

    Article  PubMed  Google Scholar 

  64. Rampichini, S., T. M. Vieira, P. Castiglioni, and G. Merati. Complexity analysis of surface electromyography for assessing the myoelectric manifestation of muscle fatigue: a review. Entropy. 22:529, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Rubio-Tamayo, J. L., M. G. Barrio, and F. G. García. Immersive environments and virtual reality: systematic review and advances in communication, interaction and simulation. Multimodal Technol. Interact. 1:1–20, 2017.

    Google Scholar 

  66. Samani, A., C. Pontonnier, G. Dumont, and P. Madeleine. Shoulder kinematics and spatial pattern of trapezius electromyographic activity in real and virtual environments. PLoS ONE. 10:1–18, 2015.

    Article  Google Scholar 

  67. Schmid, A. B., P. A. Kubler, V. Johnston, and M. W. Coppieters. A vertical mouse and ergonomic mouse pads alter wrist position but do not reduce carpal tunnel pressure in patients with carpal tunnel syndrome. Appl. Ergon. 47:151–156, 2015.

    Article  PubMed  Google Scholar 

  68. Souchet, A. D., D. Lourdeaux, A. Pagani, and L. Rebenitsch. A Narrative Review of Immersive Virtual Reality’s Ergonomics and Risks at the Workplace: Cybersickness, Visual Fatigue, Muscular Fatigue, Acute Stress, And Mental Overload. London: Springer, 2022. https://doi.org/10.1007/s10055-022-00672-0.

    Book  Google Scholar 

  69. Srinivasan, M., S. T. Mubarrat, Q. Humphrey, T. Chen, K. Binkley, and S. K. Chowdhury. The biomechanical evaluation of a human–robot collaborative task in a physically interactive virtual reality simulation testbed. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 65:403–407, 2021.

    Article  Google Scholar 

  70. Sun, X., R. Houssin, J. Renaud, and M. Gardoni. A review of methodologies for integrating human factors and ergonomics in engineering design. Int. J. Prod. Res. 2019. https://doi.org/10.1080/00207543.2018.1492161.

    Article  Google Scholar 

  71. Sun, Y., G. Kar, A. Stevenson Won, and A. Hedge. Postural risks and user experience of 3D interface designs for virtual reality-based learning environments. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 63:2313–2317, 2019.

    Article  Google Scholar 

  72. Tang, A., C. Owen, F. Biocca, and W. Mou. Comparative effectiveness of augmented reality in object assembly. Conf. Hum. Factors Comput. Syst. - Proc. 2003, pp. 73–80. https://doi.org/10.1145/642611.642626.

  73. Thakur, K., P. M. Kuber, M. Abdollahi, and E. Rashedi. Why multi-tier surgical instrument table matters? An ergonomic analysis from mento-physical demand perspectives. Appl. Ergon. 2022. https://doi.org/10.1016/j.apergo.2022.103828.

    Article  PubMed  Google Scholar 

  74. Topley, M., and J. G. Richards. A comparison of currently available optoelectronic motion capture systems. J. Biomech.106:109820, 2020.

    Article  PubMed  Google Scholar 

  75. Wen, J., and M. Gheisari. Using virtual reality to facilitate communication in the AEC domain: a systematic review. Constr. Innov. 20:509–542, 2020.

    Article  Google Scholar 

  76. Wodarski, P., J. Jurkojć, J. Polechoński, A. Bieniek, M. Chrzan, R. Michnik, and M. Gzik. Assessment of gait stability and preferred walking speed in virtual reality. Acta Bioeng. Biomech. 2020. https://doi.org/10.37190/ABB-01490-2019-03.

    Article  PubMed  Google Scholar 

  77. Wu, H., K. Huang, Y. Deng, and H. Tu. Exploring the design space of eyes-free target acquisition in virtual environments. Virtual Real. 26:513–524, 2022.

    Article  Google Scholar 

  78. Xi, N., J. Chen, F. Gama, M. Riar, and J. Hamari. The challenges of entering the metaverse: an experiment on the effect of extended reality on workload. Inf. Syst. Front. 2022. https://doi.org/10.1007/s10796-022-10244-x.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Yamada, H., & Doi, T. (2008). Teleoperation of Hydraulic Construction Robot Using Virtual Reality. In Proceedings of the JFPS International Symposium on Fluid Power (Vol. 2008(7–1), pp. 109–114). The Japan Fluid Power System Society.

  80. Yan, Y., Chen, K., Xie, Y., Song, Y., & Liu, Y. (2019). The effects of weight on comfort of virtual reality devices. In Advances in Ergonomics in Design: Proceedings of the AHFE 2018 International Conference on Ergonomics in Design, July 21–25, 2018, Loews Sapphire Falls Resort at Universal Studios, Orlando, Florida, USA 9 (pp. 239–248). Springer International Publishing.

  81. Yang, J., and K. Abdel-Malek. Human reach envelope and zone differentiation for ergonomic design. Hum. Factors Ergon. Manuf. 19:15–34, 2009.

    Article  Google Scholar 

  82. Yang, W. C., W. L. Hsu, R. M. Wu, T. W. Lu, and K. H. Lin. Motion analysis of axial rotation and gait stability during turning in people with Parkinson’s disease. Gait Posture. 44:83–88, 2016.

    Article  CAS  PubMed  Google Scholar 

  83. Yavuz, ŞU., A. Şendemir-Ürkmez, and K. S. Türker. Effect of gender, age, fatigue and contraction level on electromechanical delay. Clin. Neurophysiol. 121:1700–1706, 2010.

    Article  PubMed  Google Scholar 

  84. Yu, D., H. N. Liang, F. Lu, V. Nanjappan, K. Papangelis, and W. Wang. Target selection in head-mounted display virtual reality environments. J. Univers. Comput. Sci. 24:1217–1243, 2018.

    Google Scholar 

Download references

Funding

This study received no specific funding or grant from any agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Rashedi.

Ethics declarations

Conflict of interest

The author does not have any relevant financial or non-financial interests to disclose.

Additional information

Associate Editor Thurmon E. Lockhart oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Table 5.

Table 5 Risk of bias summary with B1: Bias arising from randomization process, B2: Bias due to deviations from intended interventions, B3: Bias due to missing outcome data, B4: Bias in the measurement of the outcome, B5: Bias in the selection of the reported result, B6: Bias due to missing information about prior musculoskeletal injury in participants, B7: Bias due to previous experience while using the devices

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuber, P.M., Rashedi, E. Alterations in Physical Demands During Virtual/Augmented Reality-Based Tasks: A Systematic Review. Ann Biomed Eng 51, 1910–1932 (2023). https://doi.org/10.1007/s10439-023-03292-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03292-0

Keywords

Navigation