Skip to main content
Log in

In Situ Strain Measurements Within Helmet Padding During Linear Impact Testing

  • S.I. : Concussions
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Drop and Impact testing of helmets are used extensively in the design process and eventual certification of helmets. These techniques have traditionally relied heavily on the measurement of the kinematic response to impact, which provides an indirect measurement of the liner response that is subject to interpretation during the design process. In the present work, we introduce an in situ experimental technique that provides a time-resolved measurement of the deformation of the helmet and its components during an impact event. The data collected from a high-speed X-ray imaging system can provide a full description of the deformation at the component level, which provides a helmet designer further insight into the performance of their helmet, while also returning the traditional kinematic metrics. The data presented focuses on the deformation of a commercial hockey helmet subjected to a series of linear impacts with three different impactor caps at speeds ranging from 2.4 to 4.5 m/s. Deformation of the liner was monitored in the midsagittal and a parasagittal plane of the helmet. The results show that there is a clear dependence on the maximum strain achieved in the foam that is dependent on the impact type, the impactor shape, and the resulting strain rate of deformation in the foam liner. These techniques can provide the first data for a direct validation and calibration of finite element helmet deformation models, while also providing a new tool-set to improve the efficacy of helmet design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Azar, A., K. B. Bhagavathula, J. Hogan, S. Ouellet, S. Satapathy, and C. R. Dennison. Protective headgear attenuates forces on the inner table and pressure in the brain parenchyma during blast and impact: an experimental study using a simulant-based surrogate model of the human head. J. Biomech. Eng. 142(4):041009, 2020.

    Article  PubMed  Google Scholar 

  2. Bailey, A. M., E. J. Sanchez, G. Park, L. F. Gabler, J. R. Funk, J.R. Crandall, M. Wonnacott, C. Withnall, B. S. Myers, and C. B. Arbogast. Development and evaluation of a test method for assessing the performance of american football helmets. Ann. Biomed. Eng. 48:2566–2579, 2020.

    Article  PubMed  Google Scholar 

  3. Bhagavathula, K. B., C. S. Meredith, S. Ouellet, S. S. Satapathy, D. L. Romanyk, and J. D. Hogan. Density, Microstructure, and Strain-Rate Effects on the Compressive Response of Polyurethane Foams. Experimental Mechanics pp. 1–15, 2020.

  4. Biasca, N., S. Wirth, and Y. Tegner. The avoidability of head and neck injuries in ice hockey: an historical review. Br. J. Sports Med. 36:410–427, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bonin, S. J., J. F. Luck, C. R. Bass, J. C. Gardiner, A. Onar-Thomas, S. S. Asfour, and G. P. Siegmund. Dynamic response and residual helmet liner crush using cadaver heads and standard headforms. Ann. Biomed. Eng. 45:565–667, 2017.

    Article  Google Scholar 

  6. Brannen, M., G. Kang, S. Dutrisac, R. Banton, J. D. Clayton, and O. E. Petel. The influence of the tertiary bronchi on dynamic lung deformation. J. Mech. Behav. Biomed. Mater. 130:105181, 2022.

    Article  CAS  PubMed  Google Scholar 

  7. Bustamante, M. C., D. Bruneau, J. B. Barker, D. Gierczycka, M. A. Coralles, and D. S. Cronin. Component-level finite element model and validation for a modern american football helmet. J. Dyn. Beh. Mater. 5(2):117–131, 2019.

    Article  Google Scholar 

  8. Casson, I. R., D. C. Viano, J. W. Powell, and E. J. Pellman. Twelve years of National Football League concussion data. Sports Health 2(6):471–483, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Corrales, M. A., D. Gierczycka, J. Barker, D. Bruneau, M. C. Bustamante, and D. S. Cronin. Validation of a football helmet finite element model and quantification of impact energy distribution. Ann. Biomed. Eng. 48(1):121–132, 2020.

    Article  CAS  PubMed  Google Scholar 

  10. Darling, T., J. Muthuswamy, and S. D. Rajan. Finite element modeling of human brain response to football helmet impacts. Comput. Methods Biomech. Biomed. Eng. 19:1432–1442, 2016.

    Article  CAS  Google Scholar 

  11. Dutrisac, S., M. Brannen, T. B. Hoshizaki, H. Frei, and O. E. Petel. A parametric analysis of embedded tissue marker properties and their effect on the accuracy of displacement measurements. J. Biomech. Eng. 143(11):111011, 2021. https://doi.org/10.1115/1.4051527..

    Article  PubMed  Google Scholar 

  12. Dutrisac, S., J. Rovt, A. Post, S. Goodwin, G. O. Cron, A. Jalali, K. Poon, S. Brien, H. Frei, T. B. Hoshizaki, and O. E. Petel. Intracranial displacement measurements within targeted anatomical regions of a postmortem human surrogate brain subjected to impact. Ann. Biomed. Eng. 49(10):2836–2851, 2021.

    Article  PubMed  Google Scholar 

  13. Dutrisac, S., Hoshizaki, T. B., and O. E. Petel. A strain-based investigation of the accuracy of embedded markers used in tracking cadaveric brain motion. EngrXiv - https://doi.org/10.31224/osf.io/7jtvw, 2021.

  14. Gabler, L. F., J. R. Crandall, and M. B. Panzer. Development of a metric for predicting brain strain responses using head kinematics. Ann. Biomed. Eng. 46:972–985, 2018.

    Article  PubMed  Google Scholar 

  15. Gadd, C. W. Use of a weighted-impulse criterion for estimating injury hazard. SAE technical paper p. 660793, 1966.

  16. Ghajari, M., P. J. Hellyer, and D. J. Sharp. Computational modelling of traumatic brain injury predicts the location of chronic traumatic encephalopathy pathology. Brain 140:333–343, 2017.

    Article  PubMed  Google Scholar 

  17. Giordano, C., and S. Kleiven. Evaluation of axonal strain as a predictor for mild traumatic brain injuries using finite element modeling. SAE Technical Paper pp. 2014–22–0002, 2014.

  18. Giudice, J. S., W. Zeng, T. Wu, A. Alshareef, D. F. Shedd, and M. B. Panzer. An Analytical Review of the Numerical Methods used for Finite Element Modeling of Traumatic Brain Injury. Ann. Biomed. Eng. 47(9):1855–1872, 2019.

    Article  PubMed  Google Scholar 

  19. Giudice, J. S., A. Caudillo, S. Mukherjee, K. Kong, G. Park, R. Kent, and M. B. Panzer. Finite element model of a deformable american football helmet under impact. Ann. Biomed. Eng. 48:5, 2020.

  20. Guidice, J., G. Park, K. Kong, A. Bailey, R. Kent, and M. Panzer. Development of open-source dummy and impactor models for the assessment of American football helmet finite element models. Ann. Biomed. Eng. 47(2):464–474, 2019.

    Article  Google Scholar 

  21. Guskiewicz, K. M., J. P. Mihalik, V. S. Shankar, W. Marshall, D. H. Crowell, S. M. Oliaro, M. F. Ciocca, and D. N. Hooker. Measurement of head impacts in collegiate football players: relationship between head impact biomechanics and acute clinical outcome after concussion. Neurosurgery 61:1244–1253, 2007.

    Article  PubMed  Google Scholar 

  22. Hoffe, B., A. Mazurkiewicz, H. Thomson, R. Banton, T. Piehler, O. E. Petel, and M. R. Holahan. Relating strain fields with microtubule changes in porcine cortical sulci following drop impact. J. Biomech. 128:110708, 2021.

    Article  PubMed  Google Scholar 

  23. Hoshizaki, T. B., A. Post, M. Kendall, J. Cournoyer, P. Rousseau, M. D. Gilchrist, S. Brien, M. Cusimano, and S. Marshall. The development of a threshold curve for the understanding of concussion in sport. Trauma 19(3):196–206, 2017.

    Article  Google Scholar 

  24. Ji, S., H. Ghadyani, R. P. Bolander, J. G. Beckwith, J. C. Ford, T. W. McAllister, L. A. Flashman, K. D. Paulsen, K. Ernstrom, S. Jain, R. Raman, L. Zhang, and R. M. Greenwald. Parametric comparisons of intracranial mechanical responses from three validated finite element models of the human head. Ann. Biomed. Eng. 42(1),:11–24, 2014.

    Article  Google Scholar 

  25. Johnston, J. M., H. Ning, J. E. Kim, Y. H. Kim, B. Soni, R. Reynolds, L. Cooper, J. B. Andrews, and U. Vaidya. Simulation, fabrication and impact testing of a novel football helmet padding system that decreases rotational acceleration. Sports Eng. 18(1):11–20, 2014.

    Article  Google Scholar 

  26. Khosroshahi, S. F., S. A. Tsampas, and U. Galvanetto. Feasibility study on the use of a hierarchical lattice architecture for helmet liners. Mater. Today Commun. 14:312–323, 2018.

    Article  CAS  Google Scholar 

  27. Li, Y., S. Ouellet, A. Vette, D. Raboud, A. Martin, and C. R. Dennison. Evaluation of the kinematic biofidelity and inter-test repeatability of global accelerations and brain parenchyma pressure for a head-brain physical model. J. Biomech. Eng. 143(9);091006, 2021.

    Article  PubMed  Google Scholar 

  28. Mazurkiewicz, A., S. Xu, H. Frei, R. Banton, T. Piehler, and O. E. Petel. Impact-induced cortical strain concentrations at the sulcal base and its implications for mild traumatic brain injury. J. Biomech. Eng. 143:061015, 2021.

    Article  PubMed  Google Scholar 

  29. McCaffrey, M. A., J. P. Mihalik, D. H. Crowell, E. W. Shields, and K. M. Guskiewicz. Measurement of head impacts in collegiate football players: clinical measures of concussion after high- and low-magnitude impacts. Neurosurgery 61:1236–1243, 2007.

    Article  PubMed  Google Scholar 

  30. Newman, J. A. A generalized model for brain injury threshold. In: Proceedings of the International Conference on Biomechanics of Impact, pp. 121–131, 1986.

  31. Ouellet, S., and D. S. Cronin. Low density polyethylene, expanded polystyrene and expanded polypropylene: strain rate and size effects on mechanical properties. Polym. Test. 53:40–50, 2014.

    Google Scholar 

  32. Ouellet, S., D. Cronin, and M. Worswick. Compressive response of polymeric foams under quasi-static, medium and high strain rate conditions. Polym. Test. 25(5):731–743, 2014.

    Google Scholar 

  33. Ouellet, S., and M. Philippens. The multi-modal responses of a physical head model subjected to various blast exposure conditions. Shock Waves 28(1):19–36, 2018.

    Article  Google Scholar 

  34. Pan, B. Full-field strain measurement using a two-dimensional savitzky-golay digital differentiator in digital image correlation. Opt. Eng. 46:033601, 2007.

    Article  Google Scholar 

  35. Petel, O. E., S. Ouellet, D. L. Frost, A. J. Higgins. Shock Hugoniot measurements in foam. J. Phys. Conf. Ser. 500(11):112050, 2014.

    Article  Google Scholar 

  36. Petel, O. E., S. Ouellet, D. L., Frost, and A. J. Higgins. The elastic-plastic behaviour of foam under shock loading. Shock Waves 23(1):55-57, 2013.

    Article  Google Scholar 

  37. Post, A., Hoshizaki, T.B.: Rotational acceleration, brain tissue strain, and the relationship to concussion. Journal of Biomechanical Engineering 137(3), 030801 (2015).

    Article  Google Scholar 

  38. Post, A., A. Oeur, and B. Hoshizaki. Examination of the relationship between peak linear and angular accelerations to brain deformation metrics in hockey helmet impacts. Comput. Methods Biomech. Biomed. Eng. 16(5):511–519, 2013.

  39. Ramirez, B. J. and V. Gupta. Evaluation of novel temperature-stable viscoelastic polyurea foams as helmet liner materials. Mater. Des. 137:298–304, 2018.

    Article  CAS  Google Scholar 

  40. Rovt, J., S. Xu, S. Dutrisac, S. Ouellet, and O. E. Petel. Helmet evaluation using in situ intracranial strain metrics within a deformable headform. Submitted (nd).

  41. Rowson, S., and S. M. Duma. Brain injury prediction: assessing the combined probability of concussion using linear and rotational head acceleration. Ann. Biomed. Eng. 41(5):873–882, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rowson, S., S. M. Duma, J. G. Beckwith, J.J. Chu, R. M. Greenwald, J. J. Crisco, P. G. Brolinson, A. C. Duhaime, T. W. McAllister, and A. C. Maerlender. Rotational head kinematics in football impacts: an injury risk function for concussion. J. Neurotrauma 40:1–13, 2012.

    Google Scholar 

  43. Sbalzarini, I. F., and P. Koumoutsakos. Feature point tracking and trajectory analysis for video imaging in cell biology. J. Struct. Biol. 151(2):182–195, 2005.

    Article  CAS  Google Scholar 

  44. Schneider, C. A., W. S. Rasband, and K. W. Eliceiri. Nih image to imagej: 25 years of image analysis. Nat. Methods 9(2):671–675, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shepherd, T., K. Winwood, P. Venkatraman, A. Alderson, and T. Allen. Validation of a finite element modeling process for auxetic structures under impact. Phys. Status Solidi (b) 257(10):1900197, 2020.

    Article  CAS  Google Scholar 

  46. Sone, J. Y., D. Kondziolka, J. H. Huang, and U. Samadani. Helmet efficacy against concussion and traumatic brain injury: a review. J. Neurosurg. 126:768–781, 2017.

    Article  PubMed  Google Scholar 

  47. Standard test method and equipment used in evaluating the performance characteristics of protective headgear/equipment. National Operating Committee on the Standards for Athletic Equipment Standard ND001-17m20, 2020.

  48. Standard test methods for equipment and procedures used in evaluating the performance characteristics of protective headgear. ASTM International Standard F1446, 2020.

  49. Standard pneumatic ram test method and equipment used in evaluating the performance characteristics of protective headgear and face guards. National Operating Committee on the Standards for Athletic Equipment Standard ND081-18m21, 2021.

  50. Takhounts, E. G., S. A. Ridella, V. Hasija, R. E. Tannous, J. Q. Campbell, D. Malone, K. Danelson, J. Stitzel, S. Rowson, and S. Duma. Investigation of traumatic brain injuries using the next generation of simulated injury monitor (simon) finite element head model. Stapp Car Crash J. 52:1–31, 2008.

    PubMed  Google Scholar 

  51. Takhounts, E. G., V. Hasija, S. A. Ridella, S. Rowson, and S. M. Duma. Kinematic rotational brain injury criterion (BRIC). In Proceedings of the 22nd enhanced safety of vehicles conference pp. 11–0263, 2011.

  52. Walsh, E. S., M. Kendall, A. Post, A. Meehan, and T. B. Hoshizaki. Comparative analysis of the hybrid iii 50th neckform and an unbiased neckform. Sport Eng. 21(4):479–485, 2018.

    Article  Google Scholar 

  53. Walsh, E. S., P. Rousseau, and T. B. Hoshizaki. The influence of impact location and angle on the dynamic impact response of a hybrid iii headform. Sports Eng. 13:135–143, 2011.

    Article  Google Scholar 

  54. Wu, T., J. S. Giudice, A. Alshareef, and M. B. Panzer. Chapter 7 - modeling mesoscale anatomical structures in macroscale brain finite element models. In: Multiscale Biomechanical Modeling of the Brain, edited by R. Prabhu, M. Horstemeyer. London: Academic Press, 2022, pp. 103–118.

  55. Wang, Y., et al. Architected lattices with adaptive energy absorption. Extrem. Mech. Lett. 33:100557, 2019.

  56. Zhou, Z., X. Li, and S. Kleiven. Biomechanics of periventricular injury. J. Neurotrauma 37(8):1074–1090, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Evangelos Spyrou of Sport Maska Inc. for useful discussions. The authors acknowledge useful input from Mary-Jo Weir Weiss and Scott Dutrisac in designing the marker insertion protocol. This work was funded through the MITACS Accelerate program (IT15996). The cineradiography system was funded through Canada Foundation for Innovation and Ontario Research Fund (Project 32933).

Conflict of interest

Oren Petel, Sheng Xu, and MacKenzie Brannen hold a patent relating to certain aspects of this work. Ryan Brownridge works for Sport Maska Inc. which sells helmets under the CCM Hockey brand name. Simon Ouellet declares no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oren E. Petel.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Brannen, M., Ouellet, S. et al. In Situ Strain Measurements Within Helmet Padding During Linear Impact Testing. Ann Biomed Eng 50, 1689–1700 (2022). https://doi.org/10.1007/s10439-022-03071-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-03071-3

Keywords

Navigation