Skip to main content
Log in

Piecewise Multivariate Linearity Between Kinematic Features and Cumulative Strain Damage Measure (CSDM) Across Different Types of Head Impacts

  • S.I.: Concussions
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In a previous study, we found that the relationship between brain strain and kinematic features cannot be described by a generalized linear model across different types of head impacts. In this study, we investigate if such a linear relationship exists when partitioning head impacts using a data-driven approach. We applied the K-means clustering method to partition 3161 impacts from various sources including simulation, college football, mixed martial arts, and car crashes. We found piecewise multivariate linearity between the cumulative strain damage (CSDM; assessed at the threshold of 0.15) and head kinematic features. Compared with the linear regression models without partition and the partition according to the types of head impacts, K-means-based data-driven partition showed significantly higher CSDM regression accuracy, which suggested the presence of piecewise multivariate linearity across types of head impacts. Additionally, we compared the piecewise linearity with the partitions based on individual features used in clustering. We found that the partition with maximum angular acceleration magnitude at 4706 rad/s2 led to the highest piecewise linearity. This study may contribute to an improved method for the rapid prediction of CSDM in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Beckwith, J. G., R. M. Greenwald, J. J. Chu, J. J. Crisco, S. Rowson, S. M. Duma, S. P. Broglio, T. W. McAllister, K. M. Guskiewicz, and J. P. Mihalik. Timing of concussion diagnosis is related to head impact exposure prior to injury. Med. Sci. Sports Exerc. 45:747, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bourdet, N., C. Deck, A. Trog, F. Meyer, V. Noblet, and R. Willinger. Deep learning methods applied to the assessment of brain injury risk. In: Proceedings of International Research Conference on the Biomechanics of Impacts, 2021.

  3. Camarillo, D. B., P. B. Shull, J. Mattson, R. Shultz, and D. Garza. An instrumented mouthguard for measuring linear and angular head impact kinematics in American football. Ann. Biomed. Eng. 41:1939–1949, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Carlsen, R. W., A. L. Fawzi, Y. Wan, H. Kesari, and C. Franck. A quantitative relationship between rotational head kinematics and brain tissue strain from a 2-D parametric finite element analysis. Brain Multiphys.2:100024, 2021.

    Article  Google Scholar 

  5. Caswell, S. V., A. E. Lincoln, H. Stone, P. Kelshaw, M. Putukian, L. Hepburn, M. Higgins, and N. Cortes. Characterizing verified head impacts in high school girls’ lacrosse. Am. J. Sports Med. 45:3374–3381, 2017.

    Article  PubMed  Google Scholar 

  6. Cecchi, N. J., A. G. Domel, Y. Liu, E. Rice, R. Lu, X. Zhan, Z. Zhou, S. J. Raymond, S. Sami, and H. Singh. Identifying factors associated with head impact kinematics and brain strain in high school American football via instrumented mouthguards. Ann. Biomed. Eng. 49:2814–2826, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cecchi, N. J., D. C. Monroe, G. M. Fote, S. L. Small, and J. W. Hicks. Head impacts sustained by male collegiate water polo athletes. PLoS ONE.14:e0216369, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Doherty, C. P., E. O’Keefe, E. Wallace, T. Loftus, J. Keaney, J. Kealy, M. M. Humphries, M. G. Molloy, J. F. Meaney, and M. Farrell. Blood–brain barrier dysfunction as a hallmark pathology in chronic traumatic encephalopathy. J. Neuropathol. Exp. Neurol. 75:656–662, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fahlstedt, M., F. Abayazid, M. B. Panzer, A. Trotta, W. Zhao, M. Ghajari, M. D. Gilchrist, S. Ji, S. Kleiven, and X. Li. Ranking and rating bicycle helmet safety performance in oblique impacts using eight different brain injury models. Ann. Biomed. Eng. 49:1097–1109, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fanton, M., C. Kuo, J. Sganga, F. Hernandez, and D. B. Camarillo. Dependency of head impact rotation on head–neck positioning and soft tissue forces. IEEE Trans. Biomed. Eng. 66:988–999, 2018.

    Article  PubMed  Google Scholar 

  11. Fanton, M., J. Sganga, and D. B. Camarillo. Vulnerable locations on the head to brain injury and implications for helmet design. J. Biomech. Eng. 2019. https://doi.org/10.1115/1.4044876.

    Article  PubMed  Google Scholar 

  12. Friedman, J., T. Hastie, and R. Tibshirani. The Elements of Statistical Learning. Springer Series in Statistics. New York: Springer, 2001.

  13. Gabler, L. F., H. Joodaki, J. R. Crandall, and M. B. Panzer. Development of a single-degree-of-freedom mechanical model for predicting strain-based brain injury responses. J. Biomech. Eng. 2018. https://doi.org/10.1115/1.4038357.

    Article  PubMed  Google Scholar 

  14. Ghazi, K., S. Wu, W. Zhao, and S. Ji. Instantaneous whole-brain strain estimation in dynamic head impact. J. Neurotrauma. 38(8):1023–1035, 2020.

    Article  PubMed  Google Scholar 

  15. Giudice, J. S., G. Park, K. Kong, A. Bailey, R. Kent, and M. B. Panzer. Development of open-source dummy and impactor models for the assessment of American football helmet finite element models. Ann. Biomed. Eng. 47:464–474, 2019.

    Article  PubMed  Google Scholar 

  16. Hernandez, F., L. C. Wu, M. C. Yip, K. Laksari, A. R. Hoffman, J. R. Lopez, G. A. Grant, S. Kleiven, and D. B. Camarillo. Six degree-of-freedom measurements of human mild traumatic brain injury. Ann. Biomed. Eng. 43:1918–1934, 2015.

    Article  PubMed  Google Scholar 

  17. Hoerl, A. E., and R. W. Kennard. Ridge regression: biased estimation for nonorthogonal problems. Technometrics. 12:55–67, 1970.

    Article  Google Scholar 

  18. James, S. L., A. Theadom, R. G. Ellenbogen, M. S. Bannick, W. Montjoy-Venning, L. R. Lucchesi, N. Abbasi, R. Abdulkader, H. N. Abraha, and J. C. Adsuar. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 18:56–87, 2019.

    Article  Google Scholar 

  19. Kleiven, S. Predictors for Traumatic Brain Injuries Evaluated Through Accident Reconstructions. SAE Technical Paper, 2007.

  20. Kuo, C., M. Fanton, L. Wu, and D. Camarillo. Spinal constraint modulates head instantaneous center of rotation and dictates head angular motion. J. Biomech. 76:220–228, 2018.

    Article  PubMed  Google Scholar 

  21. Laksari, K., M. Fanton, L. C. Wu, T. H. Nguyen, M. Kurt, C. Giordano, E. Kelly, E. O’Keeffe, E. Wallace, and C. Doherty. Multi-directional dynamic model for traumatic brain injury detection. J. Neurotrauma. 37:982–993, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Li, X., Z. Zhou, and S. Kleiven. An anatomically detailed and personalizable head injury model: significance of brain and white matter tract morphological variability on strain. Biomech. Model. Mechanobiol. 20:1–29, 2020.

    Google Scholar 

  23. Liu, Y., A. G. Domel, N. J. Cecchi, E. Rice, A. A. Callan, S. J. Raymond, Z. Zhou, X. Zhan, Y. Li, M. M. Zeineh, G. A. Grant, and D. B. Camarillo. Time window of head impact kinematics measurement for calculation of brain strain and strain rate in American football. Ann. Biomed. Eng. 49:2791–2804, 2021.

    Article  PubMed  Google Scholar 

  24. Liu, Y., A. G. Domel, S. A. Yousefsani, J. Kondic, G. Grant, M. Zeineh, and D. B. Camarillo. Validation and comparison of instrumented mouthguards for measuring previous studies simplified head kinematics and assessing brain deformation in football impacts. Ann. Biomed. Eng. 48:2580–2598, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Liu, Y., X. Zhan, A. G. Domel, M. Fanton, Z. Zhou, S. J. Raymond, H. V. Alizadeh, N. J. Cecchi, M. Zeineh, and G. Grant. Theoretical and numerical analysis for angular acceleration being determinant of brain strain in mTBI. arXiv preprint (2020). arXiv:2012.13507.

  26. MacQueen, J. Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, 1967, pp. 281–297.

  27. Montenigro, P. H., M. L. Alosco, B. M. Martin, D. H. Daneshvar, J. Mez, C. E. Chaisson, C. J. Nowinski, R. Au, A. C. McKee, and R. C. Cantu. Cumulative head impact exposure predicts later-life depression, apathy, executive dysfunction, and cognitive impairment in former high school and college football players. J. Neurotrauma. 34:328–340, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  28. O’Keeffe, E., E. Kelly, Y. Liu, C. Giordano, E. Wallace, M. Hynes, S. Tiernan, A. Meagher, C. Greene, and S. Hughes. Dynamic blood–brain barrier regulation in mild traumatic brain injury. J. Neurotrauma. 37:347–356, 2020.

    Article  PubMed  Google Scholar 

  29. Ponsford, J., C. Willmott, A. Rothwell, P. Cameron, G. Ayton, R. Nelms, C. Curran, and K. Ng. Impact of early intervention on outcome after mild traumatic brain injury in children. Pediatrics. 108:1297–1303, 2001.

    Article  CAS  PubMed  Google Scholar 

  30. Prins, M., and C. C. Giza. Repeat traumatic brain injury in the developing brain. Int. J. Dev. Neurosci. 30:185–190, 2012.

    Article  CAS  PubMed  Google Scholar 

  31. Sanchez, E. J., L. F. Gabler, A. B. Good, J. R. Funk, J. R. Crandall, and M. B. Panzer. A reanalysis of football impact reconstructions for head kinematics and finite element modeling. Clin. Biomech. 64:82–89, 2019.

    Article  Google Scholar 

  32. Shi, L., Y. Han, H. Huang, J. Davidsson, and R. Thomson. Evaluation of injury thresholds for predicting severe head injuries in vulnerable road users resulting from ground impact via detailed accident reconstructions. Biomech. Model. Mechanobiol. 19:1845–1863, 2020.

    Article  PubMed  Google Scholar 

  33. Shlosberg, D., M. Benifla, D. Kaufer, and A. Friedman. Blood–brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat. Rev. Neurol. 6:393, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Somers, J. T., B. Granderson, J. W. Melvin, A. Tabiei, C. Lawrence, A. Feiveson, M. Gernhardt, R. Ploutz-Snyder, and J. Patalak. Development of head injury assessment reference values based on NASA injury modeling. Stapp Car Crash J. 55:49, 2011.

    PubMed  Google Scholar 

  35. Takahashi, Y., and T. Yanaoka. A study of injury criteria for brain injuries in traffic accidents. In: 25th International Technical Conference on the Enhanced Safety of Vehicles (ESV). National Highway Traffic Safety Administration, 2017.

  36. Takhounts, E. G., S. A. Ridella, V. Hasija, R. E. Tannous, J. Q. Campbell, D. Malone, K. Danelson, J. Stitzel, S. Rowson, and S. Duma. Investigation of Traumatic Brain Injuries Using the Next Generation of Simulated Injury Monitor (SIMon) Finite Element Head Model. SAE Technical Paper, 2008.

  37. Taylor, C. A., J. M. Bell, M. J. Breiding, and L. Xu. Traumatic brain injury-related emergency department visits, hospitalizations, and deaths—United States, 2007 and 2013. MMWR Surveill. Summ. 66:1, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tiernan, S., A. Meagher, D. O’Sullivan, E. O’Keeffe, E. Kelly, E. Wallace, C. P. Doherty, M. Campbell, Y. Liu, and A. G. Domel. Concussion and the severity of head impacts in mixed martial arts. Proc. Inst. Mech. Eng. H. 2020. https://doi.org/10.1177/0954411920947850.

    Article  PubMed  Google Scholar 

  39. Versace, J. A Review of the Severity Index. SAE Technical Paper, 1971.

  40. Wallace, T., and J. Morris. Development and testing of a technology enhanced intervention to support emotion regulation in military mTBI with PTSD. Arch. Phys. Med. Rehabil.100:e5, 2019.

    Google Scholar 

  41. Wilcox, B. J., J. T. Machan, J. G. Beckwith, R. M. Greenwald, E. Burmeister, and J. J. Crisco. Head-impact mechanisms in men’s and women’s collegiate ice hockey. J. Athl. Train. 49:514–520, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wu, S., W. Zhao, K. Ghazi, and S. Ji. Convolutional neural network for efficient estimation of regional brain strains. Sci. Rep. 9:1–11, 2019.

    Google Scholar 

  43. Wu, S., W. Zhao, and S. Ji. Real-time dynamic simulation for highly accurate spatiotemporal brain deformation from impact. Comput. Methods Appl. Mech. Eng.394:114913, 2022.

    Article  PubMed  Google Scholar 

  44. Zhan, X., Y. Li, Y. Liu, N. J. Cecchi, S. J. Raymond, Z. Zhou, H. V. Alizadeh, J. Ruan, S. Barbat, and S. Tiernan. Classification of head impacts based on the spectral density of measurable kinematics. arXiv preprint (2021). arXiv:2104.09082.

  45. Zhan, X., Y. Li, Y. Liu, A. G. Domel, H. V. Alizadeh, S. J. Raymond, J. Ruan, S. Barbat, S. Tiernan, and O. Gevaert. The relationship between brain injury criteria and brain strain across different types of head impacts can be different. J. R. Soc. Interface. 18:20210260, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhan, X., Y. Li, Y. Liu, A. G. Domel, H. V. Alizadeh, Z. Zhou, N. J. Cecchi, S. J. Raymond, S. Tiernan, J. Ruan, S. Barbat, O. Gevaert, M. M. Zeineh, G. A. Grant, and D. B. Camarillo. Predictive factors of kinematics in traumatic brain injury from head impacts based on statistical interpretation. Ann. Biomed. Eng. 49:2901–2913, 2021.

    Article  PubMed  Google Scholar 

  47. Zhan, X., Y. Liu, N. J. Cecchi, O. Gevaert, M. Zeineh, G. Grant, and D. B. Camarillo. Find the spatial co-variation of brain deformation with principal component analysis. IEEE Trans. Biomed. Eng. 2022. https://doi.org/10.1109/tbme.2022.3163230.

    Article  PubMed  Google Scholar 

  48. Zhan, X., Y. Liu, S. J. Raymond, H. V. Alizadeh, A. Domel, O. Gevaert, M. Zeineh, G. Grant, and D. B. Camarillo. Rapid estimation of entire brain strain using deep learning models. IEEE Trans. Biomed. Eng. 68(11):3424–3434, 2021.

    Article  PubMed  Google Scholar 

  49. Zhao, W., and S. Ji. Brain strain uncertainty due to shape variation in and simplification of head angular velocity profiles. Biomech. Model. Mechanobiol. 16:449–461, 2017.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Pac-12 Conference’s Student-Athlete Health and Well-Being Initiative, the National Institutes of Health (R24NS098518), Taube Stanford Children’s Concussion Initiative and Stanford Department of Bioengineering.

Author Contributions

XZ, YL and YuL conceived this study, XZ and YL did the experiment and analyzed the data, YL, DC supervised this study, XZ, YL and YL wrote the manuscript, OG, MZ and GG revised the manuscript.

Conflict of interest

The authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzhe Liu.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10439_2022_3020_MOESM1_ESM.pdf

Supplementary file1 (PDF 836 kb) Figure S1 The CSDM regression RMSE with ridge regression and different methods on four different types of head impacts. The CSDM regression RMSE on the simulated impacts (dataset HM, a); on-field test impacts originated from dataset CF (b); dataset MMA (c), and dataset NASCAR (d). Kmeans-1/2/3: the K-means clustering method with the first/second/third critical feature: the maximum resultant angular acceleration, the maximum angular acceleration along the z-axis, the maximum linear acceleration along the y-axis. Figure S2 The CSDM regression \({R}^{2}\) with ridge regression and different methods on four different types of head impacts with different numbers of clusters. The CSDM regression \({R}^{2}\) on the simulated impacts (dataset HM, a); on-field test impacts originated from dataset CF (b); dataset MMA (c); and dataset NASCAR (d). Kmeans2/3/4: the number of clusters equals 2/3/4. It should be noted that the results here are based on clustering on all kinematic features. Figure S3 The averaged CSDM regression \({R}^{2}\) with ridge regression and different methods across four different types of head impacts with different numbers of clusters. Kmeans2/3/4: the number of clusters equals 2/3/4. It should be noted that the results here are based on clustering on all kinematic features

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, X., Li, Y., Liu, Y. et al. Piecewise Multivariate Linearity Between Kinematic Features and Cumulative Strain Damage Measure (CSDM) Across Different Types of Head Impacts. Ann Biomed Eng 50, 1596–1607 (2022). https://doi.org/10.1007/s10439-022-03020-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-03020-0

Keywords

Navigation