Skip to main content

Advertisement

Log in

MR Imaging of Human Brain Mechanics In Vivo: New Measurements to Facilitate the Development of Computational Models of Brain Injury

  • Review
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Computational models of the brain and its biomechanical response to skull accelerations are important tools for understanding and predicting traumatic brain injuries (TBIs). However, most models have been developed using experimental data collected on animal models and cadaveric specimens, both of which differ from the living human brain. Here we describe efforts to noninvasively measure the biomechanical response of the human brain with MRI—at non-injurious strain levels—and generate data that can be used to develop, calibrate, and evaluate computational brain biomechanics models. Specifically, this paper reports on a project supported by the National Institute of Neurological Disorders and Stroke to comprehensively image brain anatomy and geometry, mechanical properties, and brain deformations that arise from impulsive and harmonic skull loadings. The outcome of this work will be a publicly available dataset (http://www.nitrc.org/projects/bbir) that includes measurements on both males and females across an age range from adolescence to older adulthood. This article describes the rationale and approach for this study, the data available, and how these data may be used to develop new computational models and augment existing approaches; it will serve as a reference to researchers interested in using these data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Alshareef, A., J. S. Giudice, J. Forman, R. S. Salzar, and M. B. Panzer. A novel method for quantifying human in situ whole brain deformation under rotational loading using sonomicrometry. J. Neurotrauma 35:780–789, 2018.

    Article  PubMed  Google Scholar 

  2. Alshareef, A., J. S. Giudice, J. Forman, D. F. Shedd, K. A. Reynier, T. Wu, S. Sochor, M. R. Sochor, R. S. Salzar, and M. B. Panzer. Biomechanics of the human brain during dynamic rotation of the head. J. Neurotrauma 37:1546–1555, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Anderson, A. T., E. E. W. Van Houten, M. D. J. McGarry, K. D. Paulsen, J. L. Holtrop, B. P. Sutton, J. G. Georgiadis, and C. L. Johnson. Observation of direction-dependent mechanical properties in the human brain with multi-excitation MR elastography. J. Mech. Behav. Biomed. Mater. 59:538–546, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Arani, A., M. C. Murphy, K. J. Glaser, A. Manduca, D. S. Lake, S. A. Kruse, C. R. Jack, R. L. Ehman, and J. Huston. Measuring the effects of aging and sex on regional brain stiffness with MR elastography in healthy older adults. Neuroimage 111:59–64, 2015.

    Article  PubMed  Google Scholar 

  5. Axel, L., and L. Dougherty. MR imaging of motion with spatial modulation of magnetization. Radiology 171:841–845, 1989.

    Article  CAS  PubMed  Google Scholar 

  6. Badachhape, A. A., R. J. Okamoto, R. S. Durham, B. D. Efron, S. J. Nadell, C. L. Johnson, and P. V. Bayly. The relationship of three-dimensional human skull motion to brain tissue deformation in magnetic resonance elastography studies. J. Biomech. Eng. 139:1–12, 2017.

    Article  Google Scholar 

  7. Badachhape, A. A., R. J. Okamoto, C. L. Johnson, and P. V. Bayly. Relationships between scalp, brain, and skull motion estimated using magnetic resonance elastography. J. Biomech. 73:40–49, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Barbat, S., Y. Fu, Z. Zhan, and C. Gehre. Objective rating metric for dynamic systems. Enhanc. Saf. Veh., 2013.

  9. Basser, P. J., and C. Pierpaoli. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI 1996. J. Magn. Reson. 111:209–219, 1996.

    Article  CAS  Google Scholar 

  10. Baugh, C. M., J. M. Stamm, D. O. Riley, B. E. Gavett, M. E. Shenton, A. Lin, C. J. Nowinski, R. C. Cantu, A. C. McKee, and R. A. Stern. Chronic traumatic encephalopathy: Neurodegeneration following repetitive concussive and subconcussive brain trauma. Brain Imaging Behav. 6:244–254, 2012.

    Article  PubMed  Google Scholar 

  11. Bayly, P. V., T. S. Cohen, E. P. Leister, D. Ajo, E. C. Leuthardt, and G. M. Genin. Deformation of the human brain induced by mild acceleration. J. Neurotrauma 22:845–856, 2005.

    Article  CAS  PubMed  Google Scholar 

  12. Bazin, P. L., C. Ye, J. A. Bogovic, N. Shiee, D. S. Reich, J. L. Prince, and D. L. Pham. Direct segmentation of the major white matter tracts in diffusion tensor images. Neuroimage 58:458–468, 2011.

    Article  PubMed  Google Scholar 

  13. Berthaume, M. A., P. C. Dechow, J. Iriarte-Diaz, C. F. Ross, D. S. Strait, Q. Wang, and I. R. Grosse. Probabilistic finite element analysis of a craniofacial finite element model. J. Theor. Biol. 300:242–253, 2012.

    Article  PubMed  Google Scholar 

  14. Bilgel, M., S. Roy, A. Carass, P. A. Nyquist, and J. L. Prince. Automated anatomical labeling of the cerebral arteries using belief propagation. Proc. SPIE 8669:2013.

    Article  Google Scholar 

  15. Budday, S., T. C. Ovaert, G. A. Holzapfel, P. Steinmann, and E. Kuhl. Fifty shades of brain: a review on the mechanical testing and modeling of brain tissue. Arch. Comput. Methods Eng. 27:1187–1230, 2020.

    Article  Google Scholar 

  16. Cerjanic, A., J. L. Holtrop, G.-C. Ngo, B. Leback, G. Arnold, M. Van Moer, G. LaBelle, J. A. Fessler, and B. P. Sutton. PowerGrid: a open source library for accelerated iterative magnetic resonance image reconstruction. Med: Proc. Intl. Soc. Mag. Res, p. 525, 2016.

    Google Scholar 

  17. Chan, D. D., A. K. Knutsen, Y. C. Lu, S. H. Yang, E. Magrath, W. T. Wang, P. V. Bayly, J. A. Butman, and D. L. Pham. Statistical characterization of human brain deformation during mild angular acceleration measured in vivo by tagged magnetic resonance imaging. J. Biomech. Eng. 140:2018.

    Article  Google Scholar 

  18. Chatelin, S., C. Deck, and R. Willinger. An anisotropic viscous hyperelastic constitutive law for brain material finite-element modeling. J. Biorheol. 27:26–37, 2013.

    Article  Google Scholar 

  19. Clayton, E. H., J. R. Garbow, and P. V. Bayly. Frequency-dependent viscoelastic parameters of mouse brain tissue estimated by MR elastography. Phys. Med. Biol. 56:2391–2406, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Clayton, E. H., G. M. Genin, and P. V. Bayly. Transmission, attenuation and reflection of shear waves in the human brain. J. R. Soc. Interface 9:2899–2910, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Coats, B., G. Binenbaum, C. Smith, R. L. Peiffer, C. W. Christian, A. C. Duhaime, and S. S. Margulies. Cyclic head rotations produce modest brain injury in infant piglets. J. Neurotrauma 34:235–247, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dale, A. M., B. Fischl, and M. I. Sereno. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9:179–194, 1999.

    Article  CAS  PubMed  Google Scholar 

  23. De Rooij, R., and E. Kuhl. Constitutive modeling of brain tissue: current perspectives. Appl. Mech. Rev. 68:2016.

    Article  Google Scholar 

  24. Elkin, B. S., L. F. Gabler, M. B. Panzer, and G. P. Siegmund. Brain tissue strains vary with head impact location: a possible explanation for increased concussion risk in struck versus striking football players. Clin. Biomech. 64:49–57, 2019.

    Article  Google Scholar 

  25. Escarcega, J. D., A. K. Knutsen, R. J. Okamoto, D. L. Pham, and P. V. Bayly. Natural oscillatory modes of 3D deformation of the human brain in vivo. J. Biomech. 119:2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Feng, Y., T. M. Abney, R. J. Okamoto, R. B. Pless, G. M. Genin, and P. V. Bayly. Relative brain displacement and deformation during constrained mild frontal head impact. J. R. Soc. Interface 7:1677–1688, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Feng, Y., R. J. Okamoto, R. Namani, G. M. Genin, and P. V. Bayly. Measurements of mechanical anisotropy in brain tissue and implications for transversely isotropic material models of white matter. J. Mech. Behav. Biomed. Mater. 23:117–132, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fischl, B., and A. M. Dale. Measuring the thickness of the human cerebral cortex. Proc. Natl. Acad. Sci. 97:11050–11055, 2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fonov, V. S., A. C. Evans, R. C. McKinstry, C. R. Almli, and D. L. Collins. Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. Neuroimage 47:S102, 2009.

    Article  Google Scholar 

  30. Funk, J. R., J. M. Cormier, C. E. Bain, H. Guzman, E. Bonugli, and S. J. Manoogian. Head and neck loading in everyday and vigorous activities. Ann. Biomed. Eng. 39:766–776, 2011.

    Article  PubMed  Google Scholar 

  31. Gabler, L. F., J. R. Crandall, and M. B. Panzer. Assessment of kinematic brain injury metrics for predicting strain responses in diverse automotive impact conditions. Ann. Biomed. Eng. 44:3705–3718, 2016.

    Article  PubMed  Google Scholar 

  32. Ganpule, S., N. P. Daphalapurkar, K. T. Ramesh, A. K. Knutsen, D. L. Pham, P. V. Bayly, and J. L. Prince. A three-dimensional computational human head model that captures live human brain dynamics. J. Neurotrauma 34:2154–2166, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Garimella, H. T., and R. H. Kraft. Modeling the mechanics of axonal fiber tracts using the embedded finite element method. Int. J. Numer. Method. Biomed. Eng. 33:26–35, 2017.

    Article  Google Scholar 

  34. Gehre, C., H. Gades, and P. Wernicke. Objective Rating of signals using test and simulation responses. Proc. Int. Tech. Conf. Enhanc. Saf. Veh. 2009:, 2009.

  35. Giordano, C., and S. Kleiven. Evaluation of Axonal Strain as a Predictor for Mild Traumatic Brain Injuries Using Finite Element Modeling. Stapp Car Crash J. 58:29–61, 2014.

    PubMed  Google Scholar 

  36. Giordano, C., and S. Kleiven. Development of an unbiased validation protocol to assess the biofidelity of finite element head models used in prediction of traumatic brain injury. Stapp Car Crash J. 60:363–471, 2016.

    PubMed  Google Scholar 

  37. Giordano, C., S. Zappalà, and S. Kleiven. Anisotropic finite element models for brain injury prediction: the sensitivity of axonal strain to white matter tract inter-subject variability. Biomech. Model. Mechanobiol. 16:1269–1293, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Giudice, J. S., A. Alshareef, T. Wu, A. K. Knutsen, L. V. Hiscox, C. L. Johnson, and M. B. Panzer. Calibration of a heterogeneous brain model using a subject-specic inverse finite element approach. Front. Bioeng. Biotechnol. 2021. https://doi.org/10.3389/fbioe.2021.664268.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Giudice, J. S., W. Zeng, T. Wu, A. Alshareef, D. F. Shedd, and M. B. Panzer. An analytical review of the numerical methods used for finite element modeling of traumatic brain injury. Ann. Biomed. Eng. 47:1855–1872, 2019.

    Article  PubMed  Google Scholar 

  40. Glaister, J., A. Carass, D. L. Pham, J. A. Butman, and J. L. Prince. Falx cerebri segmentation via multi-atlas boundary fusion. Med. Image Comput. Comput. Assist. Interv. 10433:92–99, 2017.

    PubMed  PubMed Central  Google Scholar 

  41. Glaister, J., M. Shao, X. Li, A. Carass, S. Roy, A. M. Blitz, J. L. Prince, and L. Ellingsen. Deformable model reconstruction of the subarachnoid space. Proc SPIE 10574:1057431, 2018.

    Google Scholar 

  42. Gomez, A. D., M. L. Stone, P. V. Bayly, and J. L. Prince. Quantifying tensor field similarity with global distributions and optimal transport. Lect. Notes Comput. Sci. 11071 LNCS:428–436, 2018.

  43. Gomez, A. D., A. K. Knutsen, F. Xing, Y. C. Lu, D. Chan, D. L. Pham, P. Bayly, and J. L. Prince. 3-D measurements of acceleration-induced brain deformation via harmonic phase analysis and finite-element models. IEEE Trans. Biomed. Eng. 66:1456–1467, 2019.

    Article  PubMed  Google Scholar 

  44. Graham, D. I., J. H. Adams, J. A. R. Nicoll, W. L. Maxwell, and T. A. Gennarelli. The Nature, Distribution and Causes of Traumatic Brain Injury. Brain Pathol. 5:397–406, 1995.

    Article  CAS  PubMed  Google Scholar 

  45. Hajiaghamemar, M., M. Seidi, and S. S. Margulies. Head rotational kinematics, tissue deformations, and their relationships to the acute traumatic axonal injury. J. Biomech. Eng. 142:2020.

    Article  PubMed  Google Scholar 

  46. Hardy, W. N., C. D. Foster, M. J. Mason, K. H. Yang, A. I. King, and S. Tashman. Investigation of head injury mechanisms using neutral density technology and high-speed biplanar X-ray. Stapp Car Crash J. 45:337–368, 2001.

    CAS  PubMed  Google Scholar 

  47. Hardy, W. N., M. J. Mason, C. D. Foster, C. S. Shah, J. M. Kopacz, K. H. Yang, A. I. King, J. Bishop, M. Bey, W. Anderst, and S. Tashman. A study of the response of the human cadaver head to impact. Stapp Car Crash J. 51:17–80, 2007.

    PubMed  PubMed Central  Google Scholar 

  48. Hiscox, L. V., C. L. Johnson, M. D. J. McGarry, M. Perrins, A. Littlejohn, E. J. R. van Beek, N. Roberts, and J. M. Starr. High-resolution magnetic resonance elastography reveals differences in subcortical gray matter viscoelasticity between young and healthy older adults. Neurobiol. Aging 65:158–167, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hiscox, L. V., M. D. J. McGarry, H. Schwarb, E. E. W. Van Houten, R. T. Pohlig, N. Roberts, G. R. Huesmann, A. Z. Burzynska, B. P. Sutton, C. H. Hillman, A. F. Kramer, N. J. Cohen, A. K. Barbey, K. D. Paulsen, and C. L. Johnson. Standard-space atlas of the viscoelastic properties of the human brain. Hum. Brain Mapp. 41:5282–5300, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hiscox, L. V., H. Schwarb, M. D. J. McGarry, and C. L. Johnson. Aging brain mechanics: progress and promise of magnetic resonance elastography. Neuroimage 232:2021.

    Article  PubMed  Google Scholar 

  51. Horstemeyer, M. F., M. B. Panzer, and R. K. Prabhu. State-of-the-art modeling and simulation of the brain’s response to mechanical loads. Ann. Biomed. Eng. 47:1829–1831, 2019.

    Article  PubMed  Google Scholar 

  52. Huo, Y., A. J. Plassard, A. Carass, S. M. Resnick, D. L. Pham, J. L. Prince, and B. A. Landman. Consistent cortical reconstruction and multi-atlas brain segmentation. Neuroimage 138:197–210, 2016.

    Article  PubMed  Google Scholar 

  53. Irfanoglu, M. O., P. Modi, A. Nayak, E. B. Hutchinson, J. Sarlls, and C. Pierpaoli. DR-BUDDI (Diffeomorphic Registration for Blip-Up blip-Down Diffusion Imaging) method for correcting echo planar imaging distortions. Neuroimage 106:284–299, 2015.

    Article  PubMed  Google Scholar 

  54. Ji, S., and W. Zhao. A pre-computed brain response atlas for instantaneous strain estimation in contact sports. Ann. Biomed. Eng. 43:1877–1895, 2015.

    Article  PubMed  Google Scholar 

  55. Ji, S., W. Zhao, J. C. Ford, J. G. Beckwith, R. P. Bolander, R. M. Greenwald, L. A. Flashman, K. D. Paulsen, and T. W. McAllister. Group-wise evaluation and comparison of white matter fiber strain and maximum principal strain in sports-related concussion. J. Neurotrauma 32:441–454, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Johnson, C. L., J. L. Holtrop, A. T. Anderson, and B. P. Sutton. Brain MR elastography with multiband excitation and nonlinear motion-induced phase error correction. Proc. Intl. Soc. Mag. Res. Med. 1951, 2016.

  57. Johnson, C. L., E. Barnhill, M. D. J. McGarry, J. Huston, E. J. R. Van Beek, J. M. Starr, and N. Roberts. Magnetic resonance elastography (MRE) of the human brain: technique, findings and clinical applications. Phys. Med. Biol. 61:R401–R437, 2016.

    Article  PubMed  Google Scholar 

  58. Johnson, C. L., H. Schwarb, M. D. J. McGarry, A. T. Anderson, G. R. Huesmann, B. P. Sutton, and N. J. Cohen. Viscoelasticity of subcortical gray matter structures. Hum. Brain Mapp. 37:4221–4233, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Johnson, C. L., and E. H. Telzer. Magnetic resonance elastography for examining developmental changes in the mechanical properties of the brain. Dev. Cogn. Neurosci. 33:176–181, 2018.

    Article  PubMed  Google Scholar 

  60. Kimpara, H., Y. Nakahira, M. Iwamoto, K. Miki, K. Ichihara, S. ichi Kawano, and T. Taguchi. Investigation of anteroposterior head-neck responses during severe frontal impacts using a brain-spinal cord complex FE model. Stapp Car Crash J. 50:509–544, 2006.

    PubMed  Google Scholar 

  61. Kleiven, S. Predictors for traumatic brain injuries evaluated through accident reconstructions. Stapp Car Crash J. 51:81–114, 2007.

    PubMed  Google Scholar 

  62. Knutsen, A. K., A. D. Gomez, M. Gangolli, W.-T. Wang, D. Chan, Y.-C. Lu, E. Christoforou, J. L. Prince, P. V. Bayly, J. A. Butman, and D. L. Pham. In vivo estimates of axonal stretch and 3D brain deformation during mild head impact. Brain Multiphys. 1:2020.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Knutsen, A. K., E. Magrath, J. E. McEntee, F. Xing, J. L. Prince, P. V. Bayly, J. A. Butman, and D. L. Pham. Improved measurement of brain deformation during mild head acceleration using a novel tagged MRI sequence. J. Biomech. 47:3475–3481, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Koerte, I. K., A. P. Lin, A. Willems, M. Muehlmann, J. Hufschmidt, M. J. Coleman, I. Green, H. Liao, D. F. Tate, E. A. Wilde, O. Pasternak, S. Bouix, Y. Rathi, E. D. Bigler, R. A. Stern, and M. E. Shenton. A review of neuroimaging findings in repetitive brain trauma. Brain Pathol. 25:318–349, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Laksari, K., M. Kurt, H. Babaee, S. Kleiven, and D. Camarillo. Mechanistic insights into human brain impact dynamics through modal analysis. Phys. Rev. Lett. 120:2018.

    Article  CAS  PubMed  Google Scholar 

  66. Langlois, J. A., W. Rutland-Brown, and M. M. Wald. The epidemiology and impact of traumatic brain injury: a brief overview. J. Head Trauma Rehabil. 21:375–378, 2006.

    Article  PubMed  Google Scholar 

  67. Li, X., Z. Zhou, and S. Kleiven. An anatomically detailed and personalizable head injury model: Significance of brain and white matter tract morphological variability on strain. Biomech. Model. Mechanobiol. 20:403–431, 2021.

    Article  PubMed  Google Scholar 

  68. Liu, X., and J. L. Prince. Shortest path refinement for motion estimation from tagged MR images. IEEE Trans. Med. Imaging 29:1560–1572, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lu, Y. C., N. P. Daphalapurkar, A. K. Knutsen, J. Glaister, D. L. Pham, J. A. Butman, J. L. Prince, P. V. Bayly, and K. T. Ramesh. A 3D computational head model under dynamic head rotation and head extension validated using live human brain data, including the falx and the tentorium. Ann. Biomed. Eng. 47:1923–1940, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Madhukar, A., and M. Ostoja-Starzewski. Finite element methods in human head impact simulations: a review. Ann. Biomed. Eng. 47:1832–1854, 2019.

    Article  PubMed  Google Scholar 

  71. Madhukar, A., and M. Ostoja-Starzewski. Modeling and simulation of head trauma utilizing white matter properties from magnetic resonance elastography. Modelling 1:225–241, 2020.

    Article  Google Scholar 

  72. Manduca, A., T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman. Magnetic resonance elastography: non-invasive mapping of tissue elasticity. Med. Image Anal. 5:237–254, 2001.

    Article  CAS  PubMed  Google Scholar 

  73. McGarry, M. D. J., and E. E. W. Van Houten. Use of a Rayleigh damping model in elastography. Med. Biol. Eng. Comput. 46:759–766, 2008.

    Article  PubMed  Google Scholar 

  74. McGarry, M. D. J., E. E. W. Van Houten, C. Guertler, R. J. Okamoto, D. R. Smith, D. Sowinski, C. L. Johnson, P. V. Bayly, J. B. Weaver, and K. D. Paulsen. A heterogenous, time harmonic, nearly incompressible transverse isotropic finite element brain simulation platform for MR elastography. Phys. Med. Biol. 66:2021.

    Article  Google Scholar 

  75. McGarry, M. D. J., E. E. W. Van Houten, C. L. Johnson, J. G. Georgiadis, B. P. Sutton, J. B. Weaver, and K. D. Paulsen. Multiresolution MR elastography using nonlinear inversion. Med. Phys. 39:6388–6396, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. McGarry, M. D. J., E. E. W. Van Houten, P. R. Perrĩez, A. J. Pattison, J. B. Weaver, and K. D. Paulsen. An octahedral shear strain-based measure of SNR for 3D MR elastography. Phys. Med. Biol. 56:N153–N164, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. McGill, K., F. Teixeira-Dias, and A. Callanan. A review of validation methods for the intracranial response of FEHM to blunt impacts. Appl. Sci. 10:1–34, 2020.

    Article  CAS  Google Scholar 

  78. McIlvain, G., A. Cerjanic, A. G. Christodoulou, M. D. J. Mcgarry, and C. L. Johnson. OSCILLATE: A low-rank approach for accelerated magnetic resonance elastography. Proc. Intl. Soc. Mag. Res. Med. 169, 2020.

  79. McIlvain, G., H. Schwarb, N. J. Cohen, E. H. Telzer, and C. L. Johnson. Mechanical properties of the in vivo adolescent human brain. Dev. Cogn. Neurosci. 34:27–33, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Mihai, L. A., S. Budday, G. A. Holzapfel, E. Kuhl, and A. Goriely. A family of hyperelastic models for human brain tissue. J. Mech. Phys. Solids 106:60–79, 2017.

    Article  Google Scholar 

  81. Miller, L. E., J. E. Urban, and J. D. Stitzel. Development and validation of an atlas-based finite element brain model. Biomech. Model. Mechanobiol. 15:1201–1214, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Miller, L. E., J. E. Urban, and J. D. Stitzel. Validation performance comparison for finite element models of the human brain. Comput. Methods Biomech. Biomed. Engin. 20:1273–1288, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Mori, S., and J. Zhang. Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51:527–539, 2006.

    Article  CAS  PubMed  Google Scholar 

  84. Murphy, M. C., J. Huston, and R. L. Ehman. MR elastography of the brain and its application in neurological diseases. Neuroimage 187:176–183, 2019.

    Article  PubMed  Google Scholar 

  85. Murphy, M. C., J. Huston, C. R. Jack, K. J. Glaser, A. Manduca, J. P. Felmlee, and R. L. Ehman. Decreased brain stiffness in Alzheimer’s disease determined by magnetic resonance elastography. J. Magn. Reson. Imaging 34:494–498, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Muthupillai, R., D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 269:1854–1857, 1995.

    Article  CAS  PubMed  Google Scholar 

  87. Okamoto, R. J., A. J. Romano, C. L. Johnson, and P. V Bayly. Insights into traumatic brain injury from MRI of harmonic brain motion. J. Exp. Neurosci. 13:117906951984044, 2019.

  88. Osman, N. F., W. S. Kerwin, E. R. McVeigh, and J. L. Prince. Cardiac motion tracking using CINE harmonic phase (HARP) magnetic resonance imaging. Magn. Reson. Med. 42:1048–1060, 1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pahlavian, S. H., J. Oshinski, X. Zhong, F. Loth, and R. Amini. Regional quantification of brain tissue strain using displacement-encoding with stimulated echoes magnetic resonance imaging. J. Biomech. Eng. 140:1–13, 2018.

    Article  Google Scholar 

  90. Panzer, M. B., B. S. Myers, B. P. Capehart, and C. R. Bass. Development of a finite element model for blast brain injury and the effects of CSF cavitation. Ann. Biomed. Eng. 40:1530–1544, 2012.

    Article  PubMed  Google Scholar 

  91. Pierpaoli, C., L. Walker, M. O. Irfanoglu, A. Barnett, P. Basser, L.-C. Chang, C. G. Koay, S. Pajevic, J. Sarlls, and M. Wu. TORTOISE: an integrated software package for processing of diffusion MRI data. Proc. Intl. Soc. Mag. Res. Med. 1597, 2010.

  92. Post, A., A. Oeur, B. Hoshizaki, and M. D. Gilchrist. An examination of American football helmets using brain deformation metrics associated with concussion. Mater. Des. 45:653–662, 2013.

    Article  Google Scholar 

  93. Prange, M. T., and S. S. Margulies. Regional, directional, and age-dependent properties of the brain undergoing large deformation. J. Biomech. Eng. 124:244–252, 2002.

    Article  PubMed  Google Scholar 

  94. Romano, A., M. Scheel, S. Hirsch, J. Braun, and I. Sack. In vivo waveguide elastography of white matter tracts in the human brain. Magn. Reson. Med. 68:1410–1422, 2012.

    Article  PubMed  Google Scholar 

  95. Roozenbeek, B., A. I. R. Maas, and D. K. Menon. Changing patterns in the epidemiology of traumatic brain injury. Nat. Rev. Neurol. 9:231–236, 2013.

    Article  PubMed  Google Scholar 

  96. Roy, S., J. A. Butman, and D. L. Pham. Robust skull stripping using multiple MR image contrasts insensitive to pathology. Neuroimage 146:132–147, 2017.

    Article  PubMed  Google Scholar 

  97. Rump, J., D. Klatt, J. Braun, C. Warmuth, and I. Sack. Fractional encoding of harmonic motions in MR elastography. Magn. Reson. Med. 57:388–395, 2007.

    Article  PubMed  Google Scholar 

  98. Sabet, A. A., E. Christoforou, B. Zatlin, G. M. Genin, and P. V. Bayly. Deformation of the human brain induced by mild angular head acceleration. J. Biomech. 41:307–315, 2008.

    Article  PubMed  Google Scholar 

  99. Sack, I., K. Jöhrens, J. Wuerfel, and J. Braun. Structure-sensitive elastography: on the viscoelastic powerlaw behavior of in vivo human tissue in health and disease. Soft Matter 9:5672–5680, 2013.

    Article  CAS  Google Scholar 

  100. Sack, I., K. J. Streitberger, D. Krefting, F. Paul, and J. Braun. The influence of physiological aging and atrophy on brain viscoelastic properties in humans. PLoS ONE 6:2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sahoo, D., C. Deck, and R. Willinger. Brain injury tolerance limit based on computation of axonal strain. Accid. Anal. Prev. 92:53–70, 2016.

    Article  PubMed  Google Scholar 

  102. Sanchez, E. J., L. F. Gabler, A. B. Good, J. R. Funk, J. R. Crandall, and M. B. Panzer. A reanalysis of football impact reconstructions for head kinematics and finite element modeling. Clin. Biomech. 64:82–89, 2019.

    Article  Google Scholar 

  103. Sati, P., D. M. Thomasson, N. Li, D. L. Pham, N. M. Biassou, D. S. Reich, and J. A. Butman. Rapid, high-resolution, whole-brain, susceptibility-based MRI of multiple sclerosis. Mult. Scler. J. 20:1464–1470, 2014.

    Article  CAS  Google Scholar 

  104. Schmidt, J. L., D. J. Tweten, A. A. Badachhape, A. J. Reiter, R. J. Okamoto, J. R. Garbow, and P. V. Bayly. Measurement of anisotropic mechanical properties in porcine brain white matter ex vivo using magnetic resonance elastography. J. Mech. Behav. Biomed. Mater. 79:30–37, 2018.

    Article  CAS  PubMed  Google Scholar 

  105. Shaw, N. A. The neurophysiology of concussion. Prog. Neurobiol. 67:281–344, 2002.

    Article  CAS  PubMed  Google Scholar 

  106. Sloots, J. J., G. J. Biessels, and J. J. M. Zwanenburg. Cardiac and respiration-induced brain deformations in humans quantified with high-field MRI. Neuroimage 210:2020.

    Article  PubMed  Google Scholar 

  107. Smith, D. R., C. A. Guertler, R. J. Okamoto, A. J. Romano, P. V. Bayly, and C. L. Johnson. Multi-excitation magnetic resonance elastography of the brain: wave propagation in anisotropic white matter. J. Biomech. Eng. 142:2020.

    Article  PubMed  Google Scholar 

  108. Sudret, B., S. Marelli, and J. Wiart. Surrogate models for uncertainty quantification: An overview. Eur. Conf. Antennas Propag. 793–797, 2017.

  109. Sullivan, S., S. A. Eucker, D. Gabrieli, C. Bradfield, B. Coats, M. R. Maltese, J. Lee, C. Smith, and S. S. Margulies. White matter tract-oriented deformation predicts traumatic axonal brain injury and reveals rotational direction-specific vulnerabilities. Biomech. Model. Mechanobiol. 14:877–896, 2015.

    Article  PubMed  Google Scholar 

  110. Tagge, C. A., et al. Concussion, microvascular injury, and early tauopathy in young athletes after impact head injury and an impact concussion mouse model. Brain 141:422–458, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Takhounts, E. G., M. J. Craig, K. Moorhouse, J. McFadden, and V. Hasija. Development of Brain Injury Criteria (Br IC). Stapp Car Crash J. 57:243–266, 2013.

    PubMed  Google Scholar 

  112. Terem, I., W. W. Ni, M. Goubran, M. S. Rahimi, G. Zaharchuk, K. W. Yeom, M. E. Moseley, M. Kurt, and S. J. Holdsworth. Revealing sub-voxel motions of brain tissue using phase-based amplified MRI (aMRI). Magn. Reson. Med. 80:2549–2559, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Testu, J., M. D. J. McGarry, F. Dittmann, J. B. Weaver, K. D. Paulsen, I. Sack, and E. E. W. Van Houten. Viscoelastic power law parameters of in vivo human brain estimated by MR elastography. J. Mech. Behav. Biomed. Mater. 74:333–341, 2017.

    Article  CAS  PubMed  Google Scholar 

  114. Tweten, D. J., R. J. Okamoto, J. L. Schmidt, J. R. Garbow, and P. V. Bayly. Estimation of material parameters from slow and fast shear waves in an incompressible, transversely isotropic material. J. Biomech. 48:4002–4009, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Velardi, F., F. Fraternali, and M. Angelillo. Anisotropic constitutive equations and experimental tensile behavior of brain tissue. Biomech. Model. Mechanobiol. 5:53–61, 2006.

    Article  CAS  PubMed  Google Scholar 

  116. Viano, D. C., I. R. Casson, E. J. Pellman, L. Zhang, A. I. King, and K. H. Yang. Concussion in professional football: brain responses by finite element analysis: part 9. Neurosurgery 57:891–915, 2005.

    Article  PubMed  Google Scholar 

  117. Wu, T., A. Alshareef, J. S. Giudice, and M. B. Panzer. Explicit modeling of white matter axonal fiber tracts in a finite element brain model. Ann. Biomed. Eng. 47:1908–1922, 2019.

    Article  PubMed  Google Scholar 

  118. Xing, F., J. Woo, A. D. Gomez, D. L. Pham, P. V. Bayly, M. Stone, and J. L. Prince. Phase vector incompressible registration algorithm for motion estimation from tagged magnetic resonance images. IEEE Trans. Med. Imaging 36:2116–2128, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Yeung, J., L. Jugé, A. Hatt, and L. E. Bilston. Paediatric brain tissue properties measured with magnetic resonance elastography. Biomech. Model. Mechanobiol. 18:1497–1505, 2019.

    Article  PubMed  Google Scholar 

  120. Yin, Z., Y. Sui, J. D. Trzasko, P. J. Rossman, A. Manduca, R. L. Ehman, and J. Huston. In vivo characterization of 3D skull and brain motion during dynamic head vibration using magnetic resonance elastography. Magn. Reson. Med. 80:2573–2585, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zerhouni, E. A., D. M. Parish, W. J. Rogers, A. Yang, and E. P. Shapiro. Human heart: tagging with MR imaging—a new method for noninvasive assessment of myocardial motion. Radiology 169:59–63, 1988.

    Article  CAS  PubMed  Google Scholar 

  122. Zhang, L., K. H. Yang, and A. I. King. A proposed injury threshold for mild traumatic brain injury. J. Biomech. Eng. 126:226–236, 2004.

    Article  PubMed  Google Scholar 

  123. Zhao, W., B. Choate, and S. Ji. Material properties of the brain in injury-relevant conditions—experiments and computational modeling. J. Mech. Behav. Biomed. Mater. 80:222–234, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Zhao, W., and S. Ji. Displacement- and strain-based discrimination of head injury models across a wide range of blunt conditions. Ann. Biomed. Eng. 48:1661–1677, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Zhao, W., Z. Wu, and S. Ji. Displacement error propagation from embedded markers to brain strain. J. Biomech. Eng. 2021. https://doi.org/10.1115/1.4051050.

    Article  PubMed  Google Scholar 

  126. Zhou, Z., X. Li, S. Kleiven, and W. N. Hardy. Brain strain from motion of sparse markers. Stapp Car Crash J. 63:1–26, 2019.

    PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge support from the National Institutes of Health Grants U01NS112120 and R01/R56NS055951, the intramural research program in the Clinical Center of the National Institutes of Health, and the Department of Defense in the Center for Neuroscience and Regenerative Medicine.

Conflict of interest

Dr. Prince and Dr. Johnson have intellectual property rights related to some of the imaging methods described in this work.

Data Availability

All data described in this work is available at http://www.nitrc.org/projects/bbir.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Philip V. Bayly or Curtis L. Johnson.

Additional information

Associate Editor Stefan M Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayly, P.V., Alshareef, A., Knutsen, A.K. et al. MR Imaging of Human Brain Mechanics In Vivo: New Measurements to Facilitate the Development of Computational Models of Brain Injury. Ann Biomed Eng 49, 2677–2692 (2021). https://doi.org/10.1007/s10439-021-02820-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-021-02820-0

Keywords

Navigation