Skip to main content
Log in

Transcatheter Heart Valve Downstream Fluid Dynamics in an Accelerated Evaluation Environment

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Transcatheter aortic valve replacements (TAVRs) provide minimally invasive delivery of bioprosthetic heart valves (BHVs) for the treatment of aortic valve disease. While surgical BHVs show efficacy for 8-10 years, long-term TAVR durability remains unknown. Pre-clinical testing evaluates BHV durability in an ISO:5840 compliant accelerated wear tester (AWT), yet, the design and development of AWTs and their accuracy in predicting in vivo performance, is unclear. As a result of limited knowledge on AWT environment and BHV loading, durability assessment of candidate valves remains fundamentally empirical. For the first time, high-speed particle image velocimetry quantified an ISO:5840 compliant downstream AWT velocity field, Reynolds stresses, and turbulence intensity. TAVR enface imaging quantified the orifice area and estimated the flow rate. When valve area and flow rate were at their maximum during peak systole (1.49 cm2 and 16.05 L/min, respectively), central jet velocity, Reynolds normal and shear stress, and turbulence intensity grew to 0.50 m/s, 265.1 Pa, 124.6 Pa, and 37.3%, respectively. During diastole, unique AWT recirculation produced retrograde flow and the directional changes created eddies. These novel AWT findings demonstrated a substantially reduced valve fully loaded period and pressure not matching in vivo or in vitro studies, despite the comparable fluid environment and TAVR motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Alliance for Aging Research. The Silver Book: Valve Disease. 4–18, 2018.

  2. Balachandran, K., P. Sucosky, and A. P. Yoganathan. Hemodynamics and mechanobiology of aortic valve inflammation and calcification. Int. J. Inflam. 2011. https://doi.org/10.4061/2011/263870.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Baldwin, J. T., S. Deutsch, H. L. Petrie, and J. M. Tarbell. Determination of principal reynolds stresses in pulsatile flows after elliptical filtering of discrete velocity measurements. J. Biomech. Eng. 115:396–403, 1993.

    Article  CAS  PubMed  Google Scholar 

  4. Barakat, M., D. Dvir, and A. N. Azadani. Fluid Dynamic characterization of transcatheter aortic valves using particle image velocimetry. Artif. Organs 42:E357–E368, 2018.

    Article  PubMed  Google Scholar 

  5. Barannyk, O., R. Fraser, and P. Oshkai. A correlation between long-term in vitro dynamic calcification and abnormal flow patterns past bioprosthetic heart valves. J. Biol. Phys. 43:279–296, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Clark, R. E., W. M. Swanson, J. L. Kardos, R. W. Hagen, and R. A. Beauchamp. Durability of Prosthetic Heart Valves. Ann. Thorac. Surg. 26:323–335, 1978.

    Article  CAS  PubMed  Google Scholar 

  7. Dasi, L. P., H. A. Simon, P. Sucosky, and A. Yoganathan. Fluid mechanics of artificial heart valves. Clin. Exp. Pharmacol. Physiol. 36:225–237, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Daubert, M. A., N. J. Weissman, R. T. Hahn, P. Pibarot, R. Parvataneni, M. J. Mack, L. G. Svensson, D. Gopal, S. Kapadia, R. J. Siegel, S. K. Kodali, W. Y. Szeto, R. Makkar, M. B. Leon, and P. S. Douglas. Long-Term Valve Performance of TAVR and SAVR: A Report From the PARTNER I Trial. JACC Cardiovasc. Imaging 10:15–25, 2017.

    Article  Google Scholar 

  9. Fellerbaum, M. FDA expands indication for several transcatheter heart valves to patients at low risk for death or major complications associated with open heart surgery. 2019. at <FDA.gov>

  10. Gunning, P. S., N. Saikrishnan, L. M. Mcnamara, and A. P. Yoganathan. An in vitro evaluation of the impact of eccentric deployment on transcatheter aortic valve hemodynamics. Ann. Biomed. Eng. 42:1195–1206, 2014.

    Article  PubMed  Google Scholar 

  11. Hasenkam, J. M., E. M. Pedersen, J. H. Østergaard, H. Nygaard, P. K. Paulsen, G. Johannsen, and B. A. Schurizek. Velocity fields and turbulent stresses downstream of biological and mechanical aortic valve prostheses implanted in pigs. Cardiovasc. Res. 22:472–483, 1988.

    Article  CAS  PubMed  Google Scholar 

  12. Hatoum, H., A. Yousefi, S. Lilly, P. Maureira, J. Crestanello, and L. P. Dasi. An in vitro evaluation of turbulence after transcatheter aortic valve implantation. J. Thorac. Cardiovasc. Surg. 156:1837–1848, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hinton, R. B., and K. E. Yutzey. Heart Valve Structure and Function in Development and Disease. https://doi.org/10.1146/annurev-physiol-012110-142145

  14. Hoffmann, G., G. Lutter, and J. Cremer. Durability of bioprosthetic cardiac valves. Dtsch. Arztebl. 73:143–148, 2008.

    Google Scholar 

  15. Iwasaki, K., M. Umezu, K. Iijima, and K. Imachi. Implications for the establishment of accelerated fatigue test protocols for prosthetic heart valves. Artif. Organs 26:420–429, 2002.

    Article  PubMed  Google Scholar 

  16. Katopodes, N. D. Free-Surface Flow: Environmental Fluid Mechanics. Kidlington: Butterworth-Heinemann, 2019.

    Google Scholar 

  17. Kheradvar, A., and A. Falahatpisheh. The effects of dynamic saddle annulus and leaflet length on transmitral flow pattern and leaflet stress of a bileaflet bioprosthetic mitral valve. J. Heart Valve Dis. 21:225–233, 2012.

    PubMed  Google Scholar 

  18. Kilner, P. J., G. Z. Yang, R. H. Mohiaddin, D. N. Firmin, and D. B. Longmore. Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping. Circulation 88:2235–2247, 1993.

    Article  CAS  PubMed  Google Scholar 

  19. Le, T. B., and F. Sotiropoulos. Fluid-structure interaction of an aortic heart valve prosthesis driven by an animated anatomic left ventricle. J. Comput. Phys. 244:41–62, 2013.

    Article  PubMed  Google Scholar 

  20. Leon, M. B., C. R. Smith, M. Mack, D. C. Miller, J. W. Moses, L. G. Svensson, E. M. Tuzcu, J. G. Webb, G. P. Fontana, R. R. Makkar, D. L. Brown, P. C. Block, R. A. Guyton, A. D. Pichard, J. E. Bavaria, H. C. Herrmann, P. S. Douglas, J. L. Petersen, J. J. Akin, W. N. Anderson, D. Wang, and S. Pocock. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N. Engl. J. Med. 2010. https://doi.org/10.1056/NEJMoa1008232.

    Article  PubMed  Google Scholar 

  21. Li, K., and W. Sun. Simulated thin pericardial bioprosthetic valve leaflet deformation under static pressure-only loading conditions: Implications for percutaneous valves. Ann. Biomed. Eng. 38:2010, 2010.

    Google Scholar 

  22. Mack, M. J., M. B. Leon, V. H. Thourani, R. Makkar, S. K. Kodali, M. Russo, S. R. Kapadia, S. Chris Malaisrie, D. J. Cohen, P. Pibarot, J. Leipsic, R. T. Hahn, P. Blanke, M. R. Williams, J. M. McCabe, D. L. Brown, V. Babaliaros, S. Goldman, W. Y. Szeto, P. Genereux, A. Pershad, S. J. Pocock, M. C. Alu, J. G. Webb, and C. R. Smith. Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. N. Engl. J. Med. 380:1695–1705, 2019.

  23. Martin, C., and W. Sun. Comparison of transcatheter aortic valve and surgical bioprosthetic valve durability: a fatigue simulation study. J. Biomech. 48:3026–3304, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Moore, M., and J. Chen. The direct health-care burden of valvular heart disease : evidence from US national survey data. Clin. Outcomes Res. 8:613–627, 2016.

    Article  Google Scholar 

  25. Nygaard, H., P. K. Paulsen, J. M. Hasenkam, O. Kromann-Hansen, E. M. Pedersen, and P. E. Rovsing. Quantitation of the turbulent stress distribution downstream of normal, diseased and artificial aortic valves in humans. Eur. J. Cardio-thoracic Surg. 6:609–617, 1992.

    Article  CAS  Google Scholar 

  26. Organization, I. S. ISO:5840:3 Cardiovascular Implants-Cardiac Valve Prostheses: Heart Valve Substitutes Implanted by Transcatheter Techniques. 2013.

  27. Pislaru, S. V., V. T. Nkomo, and G. S. Sandhu. Assessment of prosthetic valve function after TAVR. JACC Cardiovasc. Imaging 9:193–206, 2016.

    Article  PubMed  Google Scholar 

  28. Pope, S. B. Turbulent Flows. Cambridge: Cambridge University Press, 2018.

    Google Scholar 

  29. Rotman, O. M., B. Kovarovic, W. Chiu, M. Bianchi, G. Marom, M. J. Slepian, and D. Bluestein. Novel polymeric valve for transcatheter aortic valve replacement applications: in vitro hemodynamic study. Ann. Biomed. Eng. 47:113–125, 2019.

    Article  PubMed  Google Scholar 

  30. Rowlands, G. W., B. C. Good, and S. Deutsch. Characterizing the HeartMate II left ventricular assist device outflow using particle image velocimetry. J. Biomech. Eng. 140:1–13, 2018.

    Article  Google Scholar 

  31. Sabbah, H. N., and P. D. Stein. Turbulent blood flow in humans. Its primary role in the production of ejection murmurs. Circ. Res. 38:513–524, 1976.

    Article  CAS  PubMed  Google Scholar 

  32. Saikrishnan, N., S. Gupta, and A. P. Yoganathan. Hemodynamics of the Boston Scientific LotusTM valve: an in vitro study. Cardiovasc. Eng. Technol. 4:427–439, 2013.

    Article  Google Scholar 

  33. Sathananthan, J., M. Hensey, U. Landes, A. Alkhodair, A. Saiduddin, S. Sellers, A. Cheung, S. Lauck, P. Blanke, J. Leipsic, J. Ye, D. A. Wood, and J. G. Webb. Long-term durability of transcatheter heart valves: insights from bench testing to 25 years. JACC Cardiovasc. Interv. 13:235–249, 2019.

    Article  PubMed  Google Scholar 

  34. Schoen, F. J., and R. J. Levy. Calcification of tissue heart valve substitutes: Progress toward understanding and prevention. Ann. Thorac. Surg. 79:1072–1080, 2005.

    Article  PubMed  Google Scholar 

  35. Spethmann, S., H. Dreger, S. Schattke, G. Baldenhofer, D. Saghabalyan, V. Stangl, M. Laule, G. Baumann, K. Stangl, and F. Knebel. Doppler haemodynamics and effective orifice areas of Edwards SAPIEN and CoreValve transcatheter aortic valves. Eur. Heart J. Cardiovasc. Imaging 13:690–696, 2012.

    Article  PubMed  Google Scholar 

  36. Stein, P. D., F. J. Walburn, and H. N. Sabbah. Turbulent stresses in the region of aortio and pulmonary valves. J. Biomech. Eng. 104:238–244, 1982.

    Article  CAS  PubMed  Google Scholar 

  37. Taylor, J. O., B. C. Good, A. V. Paterno, P. Hariharan, S. Deutsch, R. A. Malinauskas, and K. B. Manning. Analysis of transitional and turbulent flow through the FDA benchmark nozzle model using laser Doppler velocimetry. Cardiovasc. Eng. Technol. 7:191–209, 2016.

    Article  PubMed  Google Scholar 

  38. Thubrikar, M. J., J. D. Deck, J. Aouad, and S. P. Nolan. Role of mechanical stress in calcification of aortic bioprosthetic valves. J. Thorac. Cardiovasc. Surg. 86:115–125, 1983.

    Article  CAS  PubMed  Google Scholar 

  39. Trauzeddel, R. F., U. Löbe, A. J. Barker, C. Gelsinger, C. Butter, M. Markl, J. Schulz-Menger, and F. von Knobelsdorff-Brenkenhoff. Blood flow characteristics in the ascending aorta after TAVI compared to surgical aortic valve replacement. Int. J. Cardiovasc. Imaging 32:461–467, 2016.

    Article  PubMed  Google Scholar 

  40. Vesely, I. The evolution of bioprosthetic heart valve design and its impact on durability. Cardiovasc. Pathol. 12:277–286, 2003.

    Article  CAS  PubMed  Google Scholar 

  41. Von Knobelsdorff-Brenkenhoff, F., R. F. Trauzeddel, A. J. Barker, H. Gruettner, M. Markl, and J. Schulz-Menger. Blood flow characteristics in the ascending aorta after aortic valve replacement—a pilot study using 4D-flow MRI. Int. J. Cardiol. 170:426–433, 2014.

    Article  Google Scholar 

  42. Vyavahare, N. R., W. Chen, R. R. Joshi, C. H. Lee, D. Hirsch, J. Levy, F. J. Schoen, and R. J. Levy. Current progress in anticalcification for bioprosthetic and polymeric heart valves. Cardiovasc. Pathol. 6:219–229, 1997.

    Article  CAS  PubMed  Google Scholar 

  43. Wu, C., N. Saikrishnan, A. J. Chalekian, R. Fraser, O. Ieropoli, S. M. Retta, R. Joseph, S. Lee, S. Marquez, D. Mester, N. Pan, S. Vatanpour, C. Weinberg, and U. Steinseifer. In-vitro pulsatile flow testing of prosthetic heart valves: a Round-Robin Study by the ISO Cardiac Valves Working Group. Cardiovasc. Eng. Technol. 10:397–422, 2019.

    Article  PubMed  Google Scholar 

  44. Yokosawa, S., M. Nakamura, S. Wada, H. Isoda, H. Takeda, and T. Yamaguchi. Quantitative measurements on the human ascending aortic flow using 2D cine phase-contrast magnetic resonance imaging. JSME Int. Journal, Ser. C 48:459–467, 2005.

  45. Zareian, R., J. C. Tseng, R. Fraser, J. Meganck, M. Kilduff, M. Sarraf, D. Dvir, and A. Kheradvar. Effect of stent crimping on calcification of transcatheter aortic valves. Interact. Cardiovasc. Thorac. Surg. 29:64–73, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by NIH HL129077 and the Leighton Riess Graduate Fellowship in Engineering from the Penn State Center for Biodevices.

Conflict of Interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keefe B. Manning.

Additional information

Associate Editor Ender A. Finol oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponnaluri, S.V., Deutsch, S., Sacks, M.S. et al. Transcatheter Heart Valve Downstream Fluid Dynamics in an Accelerated Evaluation Environment. Ann Biomed Eng 49, 2170–2182 (2021). https://doi.org/10.1007/s10439-021-02751-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-021-02751-w

Keywords

Navigation