Skip to main content

Advertisement

Log in

MR-Conditional Actuations: A Review

  • Review
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Magnetic resonance imaging (MRI) is one of the most prevailing technologies to enable noninvasive and radiation-free soft tissue imaging. Operating a robotic device under MRI guidance is an active research area that has the potential to provide efficient and precise surgical therapies. MR-conditional actuators that can safely drive these robotic devices without causing safety hazards or adversely affecting the image quality are crucial for the development of MR-guided robotic devices. This paper aims to summarize recent advances in actuation methods for MR-guided robots and each MR-conditional actuator was reviewed based on its working principles, construction materials, the noteworthy features, and corresponding robotic application systems, if any. Primary characteristics, such as torque, force, accuracy, and signal-to-noise ratio (SNR) variation due to the variance of the actuator, are also covered. This paper concludes with a perspective on the current development and future of MR-conditional actuators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24

Similar content being viewed by others

References

  1. Abdelaziz, M. E., V. Groenhuis, J. Veltman, F. Siepel, and S. Stramigioli. Controlling the Stormram 2: an MRI-compatible robotic system for breast biopsy. In 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 1746–1753, 2017.

  2. Alvara, A. N., T. Looi, R. Saab, A. Shorter, A. Goldenberg, and J. Drake. Development and validation of MRI compatible pediatric surgical robot with modular tooling for bone biopsy. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 4935–4941, 2018.

  3. ASTM International. ASTM F2503-13 Standard Practice for Marking Medical Devices and Other Items for Safety in the Magnetic Resonance Environment. West Conshohocken, PA: ASTM, 2013.

    Google Scholar 

  4. Bosboom, D. G. H., J. J. Fütterer, and J. Bosboom. D. G. H. Bosboom, J. J. Fütterer, and J. Bosboom, “Motor system, motor, and robot arm device comprising the same. Google Patents, 2016.

  5. Bruyas, A., F. Geiskopf, L. Meylheuc, and P. Renaud. Combining multi-material rapid prototyping and pseudo-rigid body modeling for a new compliant mechanism. In 2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 3390–3396, 2014.

  6. Bruyas, A., F. Geiskopf, and P. Renaud. Design and modeling of a large amplitude compliant revolute joint: the helical shape compliant joint. J. Mech. Des. 137(8):085003, 2015.

    Article  Google Scholar 

  7. Burkhard, N., et al. A rolling-diaphragm hydrostatic transmission for remote MR-guided needle insertion. In 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 1148–1153, 2017.

  8. Chen, Y., I. S. Godage, S. Sengupta, C. L. Liu, K. D. Weaver, and E. J. Barth. MR-conditional steerable needle robot for intracerebral hemorrhage removal. Int. J. Comput. Assist. Radiol. Surg. 14(1):105–115, 2019.

    Article  PubMed  Google Scholar 

  9. Chen, Y., I. Godage, H. Su, A. Song, and H. Yu. Stereotactic systems for MRI-guided neurosurgeries: a state-of-the-art review. Ann. Biomed. Eng. 47(2):335–353, 2019.

    Article  PubMed  Google Scholar 

  10. Chen, Y., K.-W. Kwok, and Z. T. H. Tse. An MR-conditional high-torque pneumatic stepper motor for MRI-guided and robot-assisted intervention. Ann. Biomed. Eng. 42:1823–1833, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chen, Y., C. D. Mershon, and Z. T. H. Tse. A 10-mm MR-conditional unidirectional pneumatic stepper motor. IEEE/ASME Trans. Mechatron. 20:782–788, 2015.

    Article  Google Scholar 

  12. Chen, Y., et al. Robotic system for MRI-guided focal laser ablation in the prostate. IEEE/ASME Trans. Mechatron. 22:107–114, 2017.

    Article  Google Scholar 

  13. Chen, Y., et al. MRI-guided robotically assisted focal laser ablation of the prostate using canine cadavers. IEEE Trans. Biomed. Eng. 65(7):1434–1442, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cheng, S. S., Y. Kim, and J. P. Desai. New actuation mechanism for actively cooled SMA springs in a neurosurgical robot. IEEE Trans. Rob. 33(4):986–993, 2017.

    Article  Google Scholar 

  15. Chinzei, K., and K. Miller. Towards MRI guided surgical manipulator. Med. Sci. Monit. 7:153–163, 2001.

    CAS  PubMed  Google Scholar 

  16. Clark, J. E., et al. Biomimetic design and fabrication of a hexapedal running robot. In Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164), vol. 4. IEEE, pp. 3643–3649, 2001.

  17. Cole, G., H. S. K. Harrington, J. P. A. Camilo, and G. Fischer. Closedloop actuated surgical system utilizing real-time in-situ mri guidance. In ISER2010, 2010.

  18. Comber, D. B., J. E. Slightam, V. R. Gervasi, J. S. Neimat, and E. J. Barth. Design, additive manufacture, and control of a pneumatic MR-compatible needle driver. IEEE Trans. Rob. 32(1):138–149, 2016.

    Article  Google Scholar 

  19. Dong, Z., et al. High-performance continuous hydraulic motor for MR safe robotic teleoperation. IEEE Robot. Autom. Lett. 4(2):1964–1971, 2019.

    Article  Google Scholar 

  20. Elbannan, K. M., and S. P. Salisbury. Design of a two degree-of-freedom, MRI-compatible actuator. In 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, pp. 940–943, 2012.

  21. Elhawary, H., et al. A modular approach to mri-compatible robotics. EMBM 8:35–42, 2008.

    Google Scholar 

  22. Erwin, A., M. K. O’Malley, D. Ress, and F. Sergi. Kinesthetic feedback during 2DOF wrist movements via a novel MR-compatible robot. IEEE Trans. Neural Syst. Rehabil. Eng. 25(9):1489–1499, 2016.

    Article  PubMed  Google Scholar 

  23. Farimani, F. S., and S. Misra. Introducing PneuAct: parametrically-designed MRI-compatible pneumatic stepper actuator. In 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 200–205, 2018.

  24. Farrens, A. J., et al. Quantitative testing of fMRI-compatibility of an electrically active mechatronic device for robot-assisted sensorimotor protocols. IEEE Trans. Biomed. Eng. 2017. https://doi.org/10.1109/TBME.2017.2741346.

    Article  PubMed  Google Scholar 

  25. Fischer, G. S., G. Cole, and H. Su. Approaches to creating and controlling motion in MRI. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC. IEEE, pp. 6687–6690, 2011.

  26. Fischer, G. S., I. Iordachita, C. Csoma, J. Tokuda, S. P. DiMaio, C. M. Tempany, N. Hata, and G. Fichtinger. MRI-compatible pneumatic robot for transperineal prostate needle placement. IEEE/ASME Trans. Mechatron. 13(3):295–305, 2008.

    Article  Google Scholar 

  27. Fischer, G. S., A. Krieger, I. Iordachita, C. Csoma, L. L. Whitcomb, and G. Fichtinger. MRI compatibility of robot actuation techniques—a comparative study. In International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 509–517, 2018.

  28. Franco, E., D. Brujic, M. Rea, W. M. Gedroyc, and M. Ristic. Needle-guiding robot for laser ablation of liver tumors under MRI guidance. IEEE/ASME Trans. Mechatron. 21(2):931–944, 2015.

    Article  Google Scholar 

  29. Fras, J., Y. Noh, H. Wurdemann, and K. Althoefer. Soft fluidic rotary actuator with improved actuation properties. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 5610–5615, 2017.

  30. Gassert, R., R. Moser, E. Burdet, and H. Bleuler. MRI/fMRI-compatible robotic system with force feedback for interaction with human motion. IEEE/ASME Trans. Mechatron. 11:216–224, 2006.

    Article  Google Scholar 

  31. Gassert, R., A. Yamamoto, D. Chapuis, L. Dovat, H. Bleuler, and E. Burdet. Actuation methods for applications in MR environments (in English). Concept Magn. Reson. B 29B(4):191–209, 2006. https://doi.org/10.1002/Cmr.B.20070.

    Article  Google Scholar 

  32. Gassert, R., et al. A 2-DOF fMRI compatible haptic interface to investigate the neural control of arm movements. In Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006 (ICRA 2006), pp. 3825–3831, 2006.

  33. Grand View Research. Image-guided Therapy Systems Market Size, Share & Trends Analysis Report By End Use (ASCs, Clinics, Hospitals), By Product (MRI, PET), By Application (Neurosurgery, Urology), and Segment Forecasts, 2018–2025 (accessed).

  34. Groenhuis, V., F. J. Siepel, and S. Stramigioli. Dual-speed MR safe pneumatic stepper motors. In Robotics: Science and Systems, 2018.

  35. Groenhuis, V., F. J. Siepel, J. Veltman, and S. Stramigioli. Design and characterization of Stormram 4: an MRI-compatible robotic system for breast biopsy. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 928–933, 2017.

  36. Groenhuis, V., and S. Stramigioli. Laser-cutting pneumatics. IEEE/ASME Trans. Mechatron. 21:1604–1611, 2016.

    Article  Google Scholar 

  37. Groenhuis, V., J. Veltman, F. J. Siepel, and S. Stramigioli. Stormram 3: a magnetic resonance imaging-compatible robotic system for breast biopsy. IEEE Robot. Autom. Mag. 24(2):34–41, 2017.

    Article  Google Scholar 

  38. Guo, Z., T. Lun, Y. Chen, H. Su, D. Chan, and K. Kwok. Novel design of an MR-safe pneumatic stepper motor for MRI-guided robotic interventions. In Proceedings of The Hamlyn Symposium on Medical Robotics, 2016.

  39. Guo, Z., et al. Compact design of a hydraulic driving robot for Intraoperative MRI-guided bilateral stereotactic neurosurgery. IEEE Robot. Autom. Lett. 3(3):2515–2522, 2018.

    Article  Google Scholar 

  40. Hao, S., A. Camilo, G. A. Cole, H. Nobuhiko, C. M. Tempany, and G. S. Fischer. High-field MRI-compatible needle placement robot for prostate interventions. Stud. Health Technol. Inf. 163:623, 2011.

    Google Scholar 

  41. He, Z., et al. Design of a percutaneous MRI-guided needle robot with soft fluid-driven actuator. IEEE Robot. Autom. Lett., 2020. https://doi.org/10.1109/LRA.2020.2969929.

    Article  Google Scholar 

  42. Ho, M., and J. P. Desai. Characterization of SMA actuator for applications in robotic neurosurgery. In 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, pp. 6856–6859, 2009.

  43. Ho, M., and J. P. Desai. Towards a MRI-compatible meso-scale SMA-actuated robot using PWM control. In 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics. IEEE, pp. 361–366, 2010.

  44. Ho, M., A. B. McMillan, J. M. Simard, R. Gullapalli, and J. P. Desai. Toward a meso-scale SMA-actuated MRI-compatible neurosurgical robot. IEEE Trans. Rob. 28(1):213–222, 2011.

    Article  Google Scholar 

  45. Hunter, I. W., J. M. Hollerbach, and J. Ballantyne. A comparative analysis of actuator technologies for robotics. Robot. Rev. 2:299–342, 1991.

    Google Scholar 

  46. Kim, Y., and J. P. Desai. Design and kinematic analysis of a neurosurgical spring-based continuum robot using SMA spring actuators. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 1428–1433, 2015.

  47. Kim, D., E. Kobayashi, T. Dohi, and I. Sakuma. A new, compact MR-compatible surgical manipulator for minimally invasive liver surgery. In International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 99–106, 2002.

  48. Klinke, T., et al. Artifacts in magnetic resonance imaging and computed tomography caused by dental materials. PLoS ONE 7(2):e31766, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Krieger, A., et al. Development and preliminary evaluation of an actuated MRI-compatible robotic device for MRI-guided prostate intervention. In 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 1066–1073, 2010.

  50. Krieger, A., et al. Development and evaluation of an actuated MRI-compatible robotic system for MRI-guided prostate intervention. IEEE/ASME Trans. Mechatron. 18(1):273–284, 2011.

    Article  Google Scholar 

  51. Lathrop, R. A., D. C. Rucker, and R. J. Webster. Guidance of a steerable cannula robot in soft tissue using preoperative imaging and conoscopic surface contour sensing. In 2010 IEEE International Conference on Robotics and Automation. IEEE, pp. 5601–5606, 2010.

  52. Lee, K., et al. MR safe robotic manipulator for MRI-guided intracardiac catheterization. IEEE/ASME Trans. Mechatron. 23(2):586–595, 2018. https://doi.org/10.1109/TMECH.2018.2801787.

    Article  Google Scholar 

  53. Li, G., et al. Robotic system for MRI-guided stereotactic neurosurgery. IEEE Trans. Biomed. Eng. 62(4):1077–1088, 2014.

    Google Scholar 

  54. Masamune, K., et al. Development of an MRI-compatible needle insertion manipulator for stereotactic neurosurgery. J. Image Guided Surg. 1(4):242–248, 1995.

    Article  CAS  PubMed  Google Scholar 

  55. Maurin, B., et al. In vivo study of forces during needle insertions. In Perspective in Image-Guided Surgery, pp. 415–422, 2004.

  56. Monfaredi, R., et al. A prototype body-mounted MRI-compatible robot for needle guidance in shoulder arthrography. In 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics. IEEE, pp. 40–45, 2014.

  57. Mueller, B. Additive manufacturing technologies—rapid prototyping to direct digital manufacturing. Assembly Automation 2012. https://doi.org/10.1108/aa.2012.03332baa.010.

    Article  Google Scholar 

  58. Muntener, M., et al. Transperineal prostate intervention: robot for fully automated MR imaging—system description and proof of principle in a canine model. Radiology 247(2):543–549, 2008.

    Article  PubMed  Google Scholar 

  59. Nimsky, C., O. Ganslandt, B. von Keller, J. Romstöck, and R. Fahlbusch. Intraoperative high-field-strength MR imaging: implementation and experience in 200 patients. Radiology 233(1):67–78, 2004.

    Article  PubMed  Google Scholar 

  60. Nycz, C. J., et al. Mechanical validation of an MRI compatible stereotactic neurosurgery robot in preparation for pre-clinical trials. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 1677–1684, 2017, 2019.

  61. Orgill, G., and J. F. Wilson. Finite deformations of nonlinear, orthotropic cylindrical shells. J. Appl. Mech. 53(2):257–265, 1986.

    Article  Google Scholar 

  62. Pappafotis, N., W. Bejgerowski, R. Gullapalli, J. M. Simard, S. K. Gupta, and J. P. Desai. Towards design and fabrication of a miniature MRI-compatible robot for applications in neurosurgery. In ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers Digital Collection, pp. 747–754, 2008.

  63. Paynter, H. M. Low-cost pneumatic arthrobots powered by tug-and-twist polymer actuators. Proc. of Japan/USA Symposium on Flexible Automation, vol. 1, pp. 107–110, 1996.

  64. Paynter, H. M. Thermodynamic treatment of tug-&-twist technology: Part 1. Thermodynamic tugger design. In Proc. of Japan/USA Symposium on Flexible Automation, vol. 1, pp. 111–117, 1996.

  65. Peters, T., and K. Cleary. Image-Guided Interventions: Technology and Applications. New York: Springer, 2008.

    Book  Google Scholar 

  66. Pfeil, M. S. A., F. Geiskopf, T. P. Pusch, L. Barbe, and P. Renaud. Hydraulically-actuated compliant revolute joint for medical robotic systems based on multimaterial additive manufacturing. In 2019 International Conference on Robotics and Automation, Palais des congres de Montreal, Montreal, Canada, 2019.

  67. Pfeil, A., et al. A 3D-printed needle driver based on auxetic structure and inchworm kinematics. In ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers Digital Collection, 2018.

  68. Preston, R. C. Output Measurements for Medical Ultrasound. Berlin: Springer, 2012.

    Google Scholar 

  69. Pylatiuk, C., A. Kargov, I. Gaiser, T. Werner, S. Schulz, and G. Bretthauer. Design of a flexible fluidic actuation system for a hybrid elbow orthosis. In 2009 IEEE International Conference on Rehabilitation Robotics. IEEE, pp. 167–171, 2009.

  70. Sajima, H., H. Kamiuchi, K. Kuwana, T. Dohi, and K. Masamune. MR-safe pneumatic rotation stepping actuator. J. Robot. Mechatron. 24:820–827, 2012.

    Article  Google Scholar 

  71. Sajima, H., I. Sato, H. Yamashita, T. Dohi, and K. Masamune. Two-DoF non-metal manipulator with pneumatic stepping actuators for needle puncturing inside open-type MRI. In 2010 World Automation Congress, Kobe, pp. 1–6, 2012.

  72. Secoli, R., M. Robinson, M. Brugnoli, and F. Rodriguez y Baena. A low-cost, high-fieldstrength magnetic resonance imaging–compatible actuator. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 229:215–224, 2015.

  73. Seifabadi, R., et al. MRI robot for prostate focal laser ablation: an ex vivo study in human prostate. J. Imaging 4(12):140, 2018.

    Article  Google Scholar 

  74. Senturk, Y. M., and V. Patoglu. Design and control of an MRI compatible series elastic actuator. In 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, pp. 1473–1479, 2016.

  75. Sergi, F., A. C. Erwin, and M. K. O’Malley. Interaction control capabilities of an MR-compatible compliant actuator for wrist sensorimotor protocols during fMRI. IEEE/ASME Trans. Mechatron. 20(6):2678–2690, 2015.

    Article  Google Scholar 

  76. Stoianovici, D., A. Patriciu, D. Petrisor, D. Mazilu, and L. Kavoussi. A new type of motor: pneumatic step motor. IEEE/ASME Trans. Mechatron. 12:98–106, 2007.

    Article  Google Scholar 

  77. Stoianovici, D., et al. MRI-safe robot for endorectal prostate biopsy. IEEE/ASME Trans. Mechatron. 19:1289–1299, 2014.

    Article  Google Scholar 

  78. Stoianovici, D., et al. Multi-imager compatible, MR safe, remote center of motion needle-guide robot. IEEE Trans. Biomed. Eng. 65(1):165–177, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Su, H., J. Sandoval, M. Makhdoomi, G. Ferrigno, and E. De Momi. Safety-enhanced human-robot interaction control of redundant robot for teleoperated minimally invasive surgery. In 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018, pp. 6611–6616, 2018.

  80. Su, H., J. Sandoval, P. Vieyres, G. Poisson, G. Ferrigno, and E. De Momi. Safety-enhanced collaborative framework for tele-operated minimally invasive surgery using a 7-DoF torque-controlled robot. Int. J. Control Autom. Syst. 16(6):2915–2923, 2018.

    Article  Google Scholar 

  81. Su, H., et al. A MRI-guided concentric tube continuum robot with piezoelectric actuation: a feasibility study. In 2012 IEEE International Conference on Robotics and Automation. IEEE, pp. 1939–1945, 2012.

  82. Su, H., et al. Piezoelectrically actuated robotic system for MRI-guided prostate percutaneous therapy. IEEE/ASME Trans. Mechatron. 20(4):1920–1932, 2014.

    Article  Google Scholar 

  83. Sutherland, G. R., I. Latour, A. D. Greer, T. Fielding, G. Feil, and P. Newhook. An imageguided magnetic resonance-compatible surgical robot. Neurosurgery 62:286–293, 2008.

    Article  PubMed  Google Scholar 

  84. Tang, Z. J., S. Sugano, and H. Iwata. Design of an MRI compatible robot for finger rehabilitation. In 2012 IEEE International Conference on Mechatronics and Automation. IEEE, pp. 611–616, 2012.

  85. Tokuda, J., et al. Preclinical evaluation of an MRI-compatible pneumatic robot for angulated needle placement in transperineal prostate interventions. Int. J. Comput. Assist. Radiol. Surg. 7(6):949–957, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Tsekos, N. V., A. Khanicheh, E. Christoforou, and C. Mavroidis. Magnetic resonance–compatible robotic and mechatronics systems for image-guided interventions and rehabilitation: a review study. Annu. Rev. Biomed. Eng. 9:351–387, 2007.

    Article  CAS  PubMed  Google Scholar 

  87. U.S. Food and Drug Administration. Establishing Safety and Compatibility of Passive Implants in the Magnetic Resonance (MR) Environment. Silver Spring: U.S. Food and Drug Administration, 2014.

    Google Scholar 

  88. Vartholomeos, P., L. Qin, and P. E. Dupont. MRI-powered actuators for robotic interventions. In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.. IEEE, pp. 4508–4515, 2011.

  89. Vogan, J., et al. Manipulation in MRI devices using electrostrictive polymer actuators: With an application to reconfigurable imaging coils. In IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004, vol. 3. IEEE, pp. 2498–2504, 2004.

  90. Wang, Y., M. Shazeeb, C. Sotak, and G. Fischer. Optimization of piezoelectric motors to enhance mr compatibility for interventional devices. In ISMRM 2009, p. 4437, 2009.

  91. Webster, III, R. J., J. M. Romano, and N. J. Cowan. Mechanics of precurved-tube continuum robots. IEEE Trans. Rob. 25(1):67–78, 2008.

    Article  Google Scholar 

  92. Wei, Y., Y. Chen, Y. Yang, and Y. Li. Novel design and 3-D printing of nonassembly controllable pneumatic robots. IEEE/ASME Trans. Mechatron. 21(2):649–659, 2015.

    Article  Google Scholar 

  93. Whitney, J. P., T. Chen, J. Mars, and J. K. Hodgins. A hybrid hydrostatic transmission and human-safe haptic telepresence robot. In 2016 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 690–695, 2016.

  94. Wilson, J., and G. Orgill. Linear analysis of uniformly stressed, orthotropic cylindrical shells. J. Appl. Mech. 53(2):249–256, 1986.

    Article  Google Scholar 

  95. Wineland, A., Y. Chen, B. Boland, K. Chan, and Z. Tse. Magnetic resonance conditional microinjector. J. Imaging 5(1):4, 2019.

    Article  Google Scholar 

  96. Wineland, A., Y. Chen, and Z. Tse. Magnetic resonance imaging compatible pneumatic stepper motor with geneva drive. J. Med. Devices 10(2):020950, 2016.

    Article  Google Scholar 

  97. Wood, R. J. The first takeoff of a biologically inspired at-scale robotic insect. IEEE Trans. Rob. 24(2):341–347, 2008.

    Article  Google Scholar 

  98. Wu, D., et al. Remotely actuated needle driving device for MRI-guided percutaneous interventions. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1–7, 2019.

  99. Yu, N., and R. Riener. N. Yu and R. Riener, Review on MR-compatible robotic systems. In The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006. BioRob 2006.. IEEE, pp. 661–665, 2006.

Download references

Acknowledgments

This work is funded by Arkansas Biosciences Institute grant and NIH R01EB025179 and R01EB020003 grants. The authors would like to thank Kashu Yamazaki and Brandon Robertson for assistance searching and screening papers for review.

Conflict of interest

None to declare.

Financial disclosure

None to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Chen.

Additional information

Associate Editor Daniel Elson oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Q., Monfaredi, R., Musa, M. et al. MR-Conditional Actuations: A Review. Ann Biomed Eng 48, 2707–2733 (2020). https://doi.org/10.1007/s10439-020-02597-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02597-8

Keywords

Navigation