Skip to main content
Log in

Investigating the Mechanical Behavior of Clot Analogues Through Experimental and Computational Analysis

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

With mechanical thrombectomy emerging as the new standard of care for stroke treatment, clot analogues provide an extremely useful tool in the testing and design of these treatment devices. The aim of this study is to characterise the mechanical behavior of thrombus analogues as a function of composition. Platelet-contracted clot analogues were prepared from blood mixtures of various hematocrits. Mechanical testing was performed whereby clots were subjected to unconfined compression between two rigid plates. Two loading protocols were imposed: cyclic compression for 10 cycles at a constant strain-rate magnitude; stress-relaxation at a constant applied compressive strain. A hyper-viscoelastic constitutive law was identified and calibrated based on the experimental mechanical test data. Scanning electron microscopy (SEM) investigated the clot microstructure at various time-points. Clot analogue composition was found to strongly affect the observed mechanical behavior. The SEM found that the microstructure of the clot analogues was affected by the storage solution and age of the clot. The proposed hyper-viscoelastic constitutive model was found to successfully capture the material test data. The results presented in this study are of key importance to the evaluation and future development mechanical thrombectomy devices and procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ashton, J. H., J. P. Vande Geest, B. R. Simon, and D. G. Haskett. Compressive mechanical properties of the intraluminal thrombus in abdominal aortic aneurysms and fibrin-based thrombus mimics. J. Biomech. 42:197–201, 2009.

    Article  Google Scholar 

  2. Bird, R. B., and B. D. Marsh. Viscoelastic hysteresis. Part I. Model predictions. Trans. Soc. Rheol. 12:479–488, 1968.

    Article  CAS  Google Scholar 

  3. Chueh, J. Y., A. K. Wakhloo, G. H. Hendricks, C. F. Silva, J. P. Weaver, and M. J. Gounis. Mechanical characterization of thromboemboli in acute ischemic stroke and laboratory embolus analogs. AJNR. Am. J. Neuroradiol. 32:1237–1244, 2011.

    Article  CAS  Google Scholar 

  4. Cines, D. B., T. Lebedeva, C. Nagaswami, V. Hayes, W. Massefski, R. I. Litvinov, L. Rauova, T. J. Lowery, and J. W. Weisel. Clot contraction: compression of erythrocytes into tightly packed polyhedra and redistribution of platelets and fibrin. Blood 123:1596–1603, 2014.

    Article  CAS  Google Scholar 

  5. Di Martino, E., S. Mantero, F. Inzoli, G. Melissano, D. Astore, R. Chiesa, and R. Fumero. Biomechanics of abdominal aortic aneurysm in the presence of endoluminal thrombus: experimental characterisation and structural static computational analysis. Eur. J. Vasc. Endovasc. Surg. 15:290–299, 1998.

    Article  Google Scholar 

  6. Duffy, S., M. Farrell, K. McArdle, J. Thornton, D. Vale, E. Rainsford, L. Morris, D. S. Liebeskind, E. Maccarthy, and M. Gilvarry. Novel methodology to replicate clot analogs with diverse composition in acute ischemic stroke. J. Neurointerv. Surg. 9:486–491, 2016.

    Article  Google Scholar 

  7. Ferry, J. D., and P. R. Morrison. Chemical, clinical, and immunological studies on the prodcuts of human plasma fractionation. XVI. Fibrin clots, fibrin films, and fibrinogen plastics. J. Clin. Invest. 23:566–572, 1944.

    Article  CAS  Google Scholar 

  8. Gasser, T. C., G. Görgülü, M. Folkesson, and J. Swedenborg. Failure properties of intraluminal thrombus in abdominal aortic aneurysm under static and pulsating mechanical loads. J. Vasc. Surg. 48:179–188, 2008.

    Article  Google Scholar 

  9. Goyal, M., et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N. Engl. J. Med. 372:1019–1030, 2015.

    Article  CAS  Google Scholar 

  10. Gunning, G. M., K. Mcardle, M. Mirza, S. Duffy, M. Gilvarry, and P. A. Brouwer. Clot friction variation with fibrin content; implications for resistance to thrombectomy. J. Neurointerventioal Surg. 372:1019–1030, 2016.

    Google Scholar 

  11. Hinnen, J. W., D. J. Rixen, O. H. J. Koning, J. H. van Bockel, and J. F. Hamming. Development of fibrinous thrombus analogue for in-vitro abdominal aortic aneurysm studies. J. Biomech. 40:289–295, 2007.

    Article  CAS  Google Scholar 

  12. Huang, C.-C., P.-Y. Chen, and C.-C. Shih. Estimating the viscoelastic modulus of a thrombus using an ultrasonic shear-wave approach. Med. Phys. 40:42901, 2013.

    Article  Google Scholar 

  13. Johnson, S., J. Chueh, M. J. Gounis, R. McCarthy, J. P. McGarry, P. E. McHugh, and M. Gilvarry. Mechanical behavior of in vitro blood clots and the implications for acute ischemic stroke treatment. J. Neurointerv. Surg. 2019. https://doi.org/10.1136/neurintsurg-2019-015489.

    Article  PubMed  Google Scholar 

  14. Kim, O. V., R. I. Litvinov, M. S. Alber, and J. W. Weisel. Quantitative structural mechanobiology of platelet-driven blood clot contraction. Nat. Commun. 8:1274, 2017.

    Article  Google Scholar 

  15. Kim, J., and M. A. Srinivasan. Characterization of Viscoelastic Soft Tissue Properties from In Vivo Animal Experiments and Inverse Fe Parameter Estimation. Berlin: Springer, pp. 599–606, 2005.

    Google Scholar 

  16. Krasokha, N., W. Theisen, S. Reese, P. Mordasini, C. Brekenfeld, J. Gralla, J. Slotboom, G. Schrott, and H. Monstadt. Mechanical properties of blood clots—a new test method. Materwiss. Werksttech. 41:1019–1024, 2010.

    Article  CAS  Google Scholar 

  17. Krueger, K., P. Deissler, S. Coburger, J. W. U. Fries, and K. Lackner. How thrombus model impacts the in vitro study of interventional thrombectomy procedures. Invest. Radiol. 39:641–648, 2004.

    Article  Google Scholar 

  18. Liebeskind, D. S., N. Sanossian, W. H. Yong, S. Starkman, M. P. Tsang, A. L. Moya, D. D. Zheng, A. M. Abolian, D. Kim, L. K. Ali, S. H. Shah, A. Towfighi, B. Ovbiagele, C. S. Kidwell, S. Tateshima, R. Jahan, G. R. Duckwiler, F. Vinuela, N. Salamon, J. P. Villablanca, H. V. Vinters, V. J. Marder, and J. L. Saver. CT and MRI early vessel signs reflect clot composition in acute stroke. Stroke 42:1237–1243, 2011.

    Article  Google Scholar 

  19. Liebig, T., J. Reinartz, R. Hannes, E. Miloslavski, and H. Henkes. Comparative in vitro study of five mechanical embolectomy systems: effectiveness of clot removal and risk of distal embolization. Neuroradiology 50:43–52, 2008.

    Article  Google Scholar 

  20. Malone, F., E. McCarthy, P. Delassus, P. Fahy, J. Kennedy, A. J. Fagan, and L. Morris. The mechanical characterisation of bovine embolus analogues under various loading conditions. Cardiovasc. Eng. Technol. 9:489–502, 2018.

    Article  CAS  Google Scholar 

  21. Marder, V. J., W. C. Aird, J. S. Bennett, S. Schulman, and G. C. White. Hemostasis and Thrombosis: Basic Principles and Clinical Practice, Vol. 2. Philadelphia: Lippincott Williams & Wilkins, 2012.

    Google Scholar 

  22. Nolan, D. R., and J. P. McGarry. On the correct interpretation of measured force and calculation of material stress in biaxial tests. J. Mech. Behav. Biomed. Mater. 53:187–199, 2016.

    Article  CAS  Google Scholar 

  23. Nolan, D. R., and J. P. McGarry. On the compressibility of arterial tissue. Ann. Biomed. Eng. 44:993–1007, 2016.

    Article  CAS  Google Scholar 

  24. Riha, P., X. Wang, R. Liao, and J. Stoltz. Elasticity and fracture strain of whole blood clots. Clin. Hemorheol. Microcirc. 21:45–49, 1999.

    CAS  PubMed  Google Scholar 

  25. Saldívar, E., J. N. Orje, and Z. M. Ruggeri. Tensile destruction test as an estimation of partial proteolysis in fibrin clots. Am. J. Hematol. 71:119–127, 2002.

    Article  Google Scholar 

  26. Schmitt, C., A. Hadj Henni, and G. Cloutier. Characterization of blood clot viscoelasticity by dynamic ultrasound elastography and modeling of the rheological behavior. J. Biomech. 44:622–629, 2011.

    Article  Google Scholar 

  27. Siller-Matula, J. M., R. Plasenzotti, A. Spiel, P. Quehenberger, and B. Jilma. Interspecies differences in coagulation profile. Thromb. Haemost. 100:397–404, 2008.

    Article  CAS  Google Scholar 

  28. Slaboch, C. L., M. S. Alber, E. D. Rosen, and T. C. Ovaert. Mechano-rheological properties of the murine thrombus determined via nanoindentation and finite element modeling. J. Mech. Behav. Biomed. Mater. 10:75–86, 2012.

    Article  Google Scholar 

  29. Teng, Z., J. Feng, Y. Zhang, Y. Huang, M. P. F. Sutcliffe, A. J. Brown, Z. Jing, J. H. Gillard, and Q. Lu. Layer- and direction-specific material properties, extreme extensibility and ultimate material strength of human abdominal aorta and aneurysm: a uniaxial extension study. Ann. Biomed. Eng. 43:2745–2759, 2015.

    Article  Google Scholar 

  30. Tutwiler, V., A. R. Mukhitov, A. D. Peshkova, G. Le Minh, R. R. Khismatullin, J. Vicksman, C. Nagaswami, R. I. Litvinov, and J. W. Weisel. Shape changes of erythrocytes during blood clot contraction and the structure of polyhedrocytes. Sci. Rep. 8:17907, 2018.

    Article  CAS  Google Scholar 

  31. Tutwiler, V., A. D. Peshkova, I. A. Andrianova, D. R. Khasanova, J. W. Weisel, and R. I. Litvinov. Contraction of blood clots is impaired in acute ischemic stroke. Arterioscler. Thromb. Vasc. Biol. 37:271–279, 2017.

    Article  CAS  Google Scholar 

  32. van Dam, E. A., S. D. Dams, G. W. M. Peters, M. C. M. Rutten, G. W. H. Schurink, J. Buth, and F. N. van de Vosse. Determination of linear viscoelastic behavior of abdominal aortic aneurysm thrombus. Biorheology 43:695–707, 2006.

    PubMed  Google Scholar 

  33. van Dam, E. A., S. D. Dams, G. W. M. Peters, M. C. M. Rutten, G. W. H. Schurink, J. Buth, and F. N. van de Vosse. Non-linear viscoelastic behavior of abdominal aortic aneurysm thrombus. Biomech. Model Mechanobiol. 7:127–137, 2008.

    Article  Google Scholar 

  34. Van Der Worp, H. B., and J. Van Gijn. Acute ischemic stroke. N. Engl. J. Med. 357:572–579, 2007.

    Article  Google Scholar 

  35. van Kempen, T. H. S., G. W. M. Peters, and F. N. van de Vosse. A constitutive model for the time-dependent, nonlinear stress response of fibrin networks. Biomech. Model. Mechanobiol. 14:995–1006, 2015.

    Article  Google Scholar 

  36. Vande Geest, J. P., M. S. Sacks, D. A. Vorp, D. A. Vorp, B. Ray, G. Kuhan, I. C. Chetter, and P. T. McCollum. A planar biaxial constitutive relation for the luminal layer of intra-luminal thrombus in abdominal aortic aneurysms. J. Biomech. 39:2347–2354, 2006.

    Article  Google Scholar 

  37. Wang, D. H., M. Makaroun, M. W. Webster, and D. A. Vorp. Mechanical properties and microstructure of intraluminal thrombus from abdominal aortic aneurysm. J. Biomech. Eng. 123:536–539, 2001.

    Article  CAS  Google Scholar 

  38. Wang, X., J. A. Schoen, and M. E. Rentschler. A quantitative comparison of soft tissue compressive viscoelastic model accuracy. J. Mech. Behav. Biomed. Mater. 20:126–136, 2013.

    Article  CAS  Google Scholar 

  39. Weafer, F. M., S. Duffy, I. Machado, G. Gunning, P. Mordasini, E. Roche, P. E. McHugh, and M. Gilvarry. Characterization of strut indentation during mechanical thrombectomy in acute ischemic stroke clot analogs. J. Neurointerv. Surg. 2019. https://doi.org/10.1136/neurintsurg-2018-014601.

    Article  PubMed  Google Scholar 

  40. Xie, H., K. Kim, S. R. Aglyamov, S. Y. Emelianov, M. O’Donnell, W. F. Weitzel, S. K. Wrobleski, D. D. Myers, T. W. Wakefield, and J. M. Rubin. Correspondence of ultrasound elasticity imaging to direct mechanical measurement in aging DVT in rats. Ultrasound Med. Biol. 31:1351–1359, 2005.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support of Cerenovus, the Irish Research Council Enterprise Partnership Scheme and the NUI Galway Hardiman Research Scholarship for this research. PMcG and RMcC acknowledge funding from the European Union Horizon 2020 Research and Innovation Program.

Conflict of interest

S.J reports grants from Irish Research Council, grants and non-financial support from Cerenovus, during the conduct of the study; grants and non-financial support from Cerenovus, outside the submitted work. PMcG and RMcC acknowledge funding from the European Union Horizon 2020 Research and Innovation Program, under grant agreement No. 777072.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Patrick McGarry.

Additional information

Associate Editor Andreas Anayiotos oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, S., McCarthy, R., Gilvarry, M. et al. Investigating the Mechanical Behavior of Clot Analogues Through Experimental and Computational Analysis. Ann Biomed Eng 49, 420–431 (2021). https://doi.org/10.1007/s10439-020-02570-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02570-5

Keywords

Navigation