Skip to main content
Log in

Inpainting as a Technique for Estimation of Missing Voxels in Brain Imaging

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Issues with model fitting (i.e. suboptimal standard deviation, linewidth/full-width-at-half-maximum, and/or signal-to-noise ratio) in multi-voxel MRI spectroscopy, or chemical shift imaging (CSI) can result in the significant loss of usable voxels. A potential solution to minimize this problem is to estimate the value of unusable voxels by utilizing information from reliable voxels in the same image. We assessed an image restoration method called inpainting as a tool to restore unusable voxels, and compared it with traditional interpolation methods (nearest neighbor, trilinear interpolation and tricubic interpolation). In order to evaluate the performance across varying image contrasts and spatial resolutions, we applied the same techniques to a T1-weighted MRI brain dataset, and N-acetylaspartate (NAA) spectroscopy maps from a CSI dataset. For all image types, inpainting exhibited superior performance (lower normalized root-mean-square errors, NRMSE) compared to all other methods considered (p’s < 0.001). Inpainting maintained an average NRMSE of less than 5% even with 50% missing voxels, whereas the other techniques demonstrated up to three times that value, depending on the nature of the image. For CSI maps, inpainting maintained its superiority whether the previously unusable voxels were randomly distributed, or located in regions most commonly affected by voxel loss in real-world data. Inpainting is a promising approach for recovering unusable or missing voxels in voxel-wise analyses, particularly in imaging modalities characterized by low SNR such as CSI. We hypothesize that this technique may also be applicable for datasets from other imaging modalities, such as positron emission tomography, or dynamic susceptibility contrast MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Albrecht, D. S., A. Forsberg, A. Sandström, C. Bergan, D. Kadetoff, E. Protsenko, J. Lampa, Y. C. Lee, C. O. Höglund, C. Catana, S. Cervenka, O. Akeju, M. Lekander, G. Cohen, C. Halldin, N. Taylor, M. Kim, J. M. Hooker, R. R. Edwards, V. Napadow, E. Kosek, and M. L. Loggia. Brain glial activation in fibromyalgia—a multi-site positron emission tomography investigation. Brain Behav. Immun. 75:72–83, 2019.

    Article  Google Scholar 

  2. Albrecht, D. S., M. Kim, O. Akeju, A. Torrado-Carvajal, R. R. Edwards, Y. Zhang, C. Bergan, E. Protsenko, A. Kucyi, A. Wasan, J. M. Hooker, V. Napadow, and M. L. Loggia. The neuroinflammatory component of negative affect in patients with chronic pain. Mol. Psychiatry 2019. https://doi.org/10.1038/s41380-019-0433-1.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Andronesi, O. C., B. A. Gagoski, and A. G. Sorensen. Neurologic 3D MR spectroscopic imaging with low-power adiabatic pulses and fast spiral acquisition. Radiology 262(2):647–661, 2012.

    Article  Google Scholar 

  4. Andronesi, O. C., S. Ramadan, E. M. Ratai, D. Jennings, C. E. Mountford, and A. G. Sorensen. Spectroscopic imaging with improved gradient modulated constant adiabaticity pulses on high-field clinical scanners. J. Magn. Reson. 203(2):283–293, 2010.

    Article  CAS  Google Scholar 

  5. Armanious, K., Y. Mecky, S. Gatidis, and B. Yang. Adversarial inpainting of medical image modalities. arXiv preprint arXiv:181006621 2018.

  6. Astrakas, L. G., and M. I. Argyropoulou. Shifting from region of interest (ROI) to voxel-based analysis in human brain mapping. Pediatr. Radiol. 40(12):1857–1867, 2010.

    Article  Google Scholar 

  7. Bertalmio, M., L. Vese, G. Sapiro, and S. Osher. Simultaneous structure and texture image inpainting. IEEE Trans. Image Process. 12(8):882–889, 2003.

    Article  Google Scholar 

  8. Bogner, W., A. T. Hess, B. Gagoski, M. D. Tisdall, A. J. van der Kouwe, S. Trattnig, B. R. Rosen, and O. C. Andronesi. Real-time motion- and B0-correction for LASER-localized spiral-accelerated 3D-MRSI of the brain at 3 T. Neuroimage 88:22–31, 2014.

    Article  Google Scholar 

  9. Chan, T., and J. Shen. Variational image inpainting. Commun. Pure Appl. Math. 58(5):579–619, 2005.

    Article  Google Scholar 

  10. Criminisi, A., P. Pérez, and K. Toyama. Region filling and object removal by exemplar-based image inpainting. IEEE Trans. Image Process. 13(9):1200–1212, 2004.

    Article  Google Scholar 

  11. Elharrouss, O., N. Almaadeed, S. Al-Maadeed, and Y. Akbari. Image inpainting: a review. Neural Process. Lett. 51:2007–2028, 2019.

    Article  Google Scholar 

  12. Garcia, D. Robust smoothing of gridded data in one and higher dimensions with missing values. Comput. Stat. Data Anal. 54(4):1167–1178, 2010.

    Article  Google Scholar 

  13. Giuliani, N. R., V. D. Calhoun, G. D. Pearlson, A. Francis, and R. W. Buchanan. Voxel-based morphometry versus region of interest: a comparison of two methods for analyzing gray matter differences in schizophrenia. Schizophr. Res. 74(2–3):135–147, 2005.

    Article  Google Scholar 

  14. Graveron-Demilly, D. Quantification in magnetic resonance spectroscopy based on semi-parametric approaches. MAGMA 27(2):113–130, 2014.

    Article  Google Scholar 

  15. Guillemot, C., and O. Le Meur. Image inpainting. IEEE Signal Process. Mag. 31(1):127–144, 2014.

    Article  Google Scholar 

  16. Guizard, N., K. Nakamura, P. Coupé, V. S. Fonov, D. L. Arnold, and D. L. Collins. Non-local means inpainting of MS lesions in longitudinal image processing. Front. Neurosci. 9:456, 2015.

    Article  Google Scholar 

  17. Hayasaka, S., and P. J. Laurienti. Comparison of characteristics between region-and voxel-based network analyses in resting-state fMRI data. Neuroimage 50(2):499–508, 2010.

    Article  Google Scholar 

  18. Kikinis, R., S. D. Pieper, and K. G. Vosburgh. 3D Slicer: a platform for subject-specific image analysis, visualization, and clinical support. In: Intraoperative Imaging and Image-Guided Therapy, edited by F. A. Jolesz. New York: Springer, 2014, pp. 277–289.

    Chapter  Google Scholar 

  19. Liu, D., X. Sun, F. Wu, S. Li, and Y. Zhang. Image compression with edge-based inpainting. IEEE Trans. Circuits Syst. Video Technol. 17(10):1273–1287, 2007.

    Article  Google Scholar 

  20. Loggia, M. L., D. B. Chonde, O. Akeju, G. Arabasz, C. Catana, R. R. Edwards, E. Hill, S. Hsu, D. Izquierdo-Garcia, R. R. Ji, M. Riley, A. D. Wasan, N. R. Zürcher, D. S. Albrecht, M. G. Vangel, B. R. Rosen, V. Napadow, and J. M. Hooker. Evidence for brain glial activation in chronic pain patients. Brain 138(Pt 3):604–615, 2015.

    Article  Google Scholar 

  21. Ostuni, J. L., A. K. Santha, V. S. Mattay, D. R. Weinberger, R. L. Levin, and J. A. Frank. Analysis of interpolation effects in the reslicing of functional MR images. J. Comput. Assist. Tomogr. 21(5):803–810, 1997.

    Article  CAS  Google Scholar 

  22. Parker, J., R. V. Kenyon, and D. E. Troxel. Comparison of interpolating methods for image resampling. IEEE Trans. Med. Imaging 2(1):31–39, 1983.

    Article  CAS  Google Scholar 

  23. Prados, F., M. J. Cardoso, B. Kanber, O. Ciccarelli, R. Kapoor, C. A. M. Gandini Wheeler-Kingshott, and S. Ourselin. A multi-time-point modality-agnostic patch-based method for lesion filling in multiple sclerosis. Neuroimage 139:376–384, 2016.

    Article  Google Scholar 

  24. Provencher, S. W. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn. Reson. Med. 30(6):672–679, 1993.

    Article  CAS  Google Scholar 

  25. Rane, S., G. Sapiro, and M. Bertalmio. Structure and texture filling-in of missing image blocks in wireless transmission and compression applications. IEEE Trans. Image Process. 12(3):296–303, 2003.

    Article  Google Scholar 

  26. Sdika, M., and D. Pelletier. Nonrigid registration of multiple sclerosis brain images using lesion inpainting for morphometry or lesion mapping. Hum. Brain Mapp. 30(4):1060–1067, 2009.

    Article  Google Scholar 

  27. Smith, S., T. Levante, B. Meier, and R. Ernst. Computer-simulations in magnetic-resonance—an object-oriented programming approach. J. Magn. Reson. A 106(1):75–105, 1994.

    Article  CAS  Google Scholar 

  28. Snook, L., C. Plewes, and C. Beaulieu. Voxel based versus region of interest analysis in diffusion tensor imaging of neurodevelopment. Neuroimage 34(1):243–252, 2007.

    Article  Google Scholar 

  29. Thévenaz, P., T. Blu, and M. Unser. Image interpolation and resampling. In: Handbook of Medical Image Processing and Analysis2nd, edited by I. N. Bankman. Cambridge: Academic, 2009, pp. 465–493.

    Chapter  Google Scholar 

  30. Torrado-Carvajal, A., D. S. Albrecht, J. Lee, O. C. Andronesi, E. Ratai, V. Napadow, and M. L. Loggia. Inpainting as a technique for estimation of missing voxels in chemical shift imaging. bioRxiv preprint bioRxiv:2002.02.17.952325.

  31. Wang, G., D. Garcia, Y. Liu, R. de Jeu, and A. Dolman. A three-dimensional gap filling method for large geophysical datasets: application to global satellite soil moisture observations. Environ. Model. Softw. 30:139–142, 2012.

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by National Institutes of Health (NIH), National Institute of Neurological Disorders and Stroke (NINDS) 1R21NS087472-01A1 (MLL), 1R01NS095937-01A1 (MLL), 1R01NS094306-01A1 (MLL), 1R01DA047088-01 (MLL/EMR), R01CA190901 (EMR) and Department of Defense (DoD) W81XWH-14-1-0543 (MLL). This work was also supported by the NIH Office of the Director OT2-OD023867 (VN); National Center for Complementary and Integrative Health (NCCIH) P01-AT009965 (VN), R61-AT009306 (VN), R33-AT009306 (VN), R01-AT007550 (VN); and National Institute for Arthritis and Musculoskeletal and Skin Diseases (NIAMS) R01-AR064367 (VN). No other potential conflict of interest relevant to this article was reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel Torrado-Carvajal.

Additional information

Associate Editor Agata A. Exner oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torrado-Carvajal, A., Albrecht, D.S., Lee, J. et al. Inpainting as a Technique for Estimation of Missing Voxels in Brain Imaging. Ann Biomed Eng 49, 345–353 (2021). https://doi.org/10.1007/s10439-020-02556-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02556-3

Keywords

Navigation