Skip to main content

Advertisement

Log in

Enhanced In Vivo Bone and Blood Vessel Formation by Iron Oxide and Silica Doped 3D Printed Tricalcium Phosphate Scaffolds

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Calcium phosphate (CaP) ceramics show significant promise towards bone graft applications because of the compositional similarity to inorganic materials of bone. With 3D printing, it is possible to create ceramic implants that closely mimic the geometry of human bone and can be custom-designed for unusual injuries or anatomical sites. The objective of the study was to optimize the 3D-printing parameters for the fabrication of scaffolds, with complex geometry, made from synthesized tricalcium phosphate (TCP) powder. This study was also intended to elucidate the mechanical and biological effects of the addition of Fe+3 and Si+4 in TCP implants in a rat distal femur model for 4, 8, and 12 weeks. Doped with Fe+3 and Si+4 TCP scaffolds with 3D interconnected channels were fabricated to provide channels for micronutrients delivery and improved cell-material interactions through bioactive fixation. Addition of Fe+3 into TCP enhanced early-stage new bone formation by increasing type I collagen production. Neovascularization was observed in the Si+4 doped samples after 12 weeks. These findings emphasize that the additive manufacturing of scaffolds with complex geometry from synthesized ceramic powder with modified chemistry is feasible and may serve as a potential candidate to introduce angiogenic and osteogenic properties to CaPs, leading to accelerated bone defect healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. ASTM C773-88. Standard test method for compressive (crushing) strength of fired whiteware materials. ASTM International, West Conshohocken, PA, 2016. www.astm.org.

  2. Bandyopadhyay, A., S. Bernard, W. Xue, and S. Bose. Calcium phosphate-based resorbable ceramics: influence of MgO, ZnO, and SiO2 dopants. J. Am. Ceram. Soc. 89(9):2675–2688, 2006.

    Article  CAS  Google Scholar 

  3. Becker, S. T., P. H. Warnke, E. Behrens, and J. Wiltfang. Morbidity after iliac crest bone graft harvesting over an anterior versus posterior approach. J. Oral Maxillofac. Surg. 69(1):48–53, 2011.

    Article  PubMed  Google Scholar 

  4. Bose, S., D. Banerjee, and A. Bandyopadhyay. Introduction to biomaterials and devices for bone disorders. Mater. Bone Disord. 2017. https://doi.org/10.1016/B978-0-12-802792-9.00001-X.

    Article  Google Scholar 

  5. Bose, S., M. Roy, and A. Bandyopadhyay. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 30(10):546–554, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. de Jong, L., and A. Kemp. Stoicheiometry and kinetics of the prolyl 4-hydroxylase partial reaction. Biochim. Biophys. Acta 787(1):105–111, 1984.

    Article  PubMed  Google Scholar 

  7. Fielding, G. A., A. Bandyopadhyay, and S. Bose. Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds. Dent. Mater. 28(2):113–122, 2012.

    Article  CAS  PubMed  Google Scholar 

  8. Fielding, G., and S. Bose. SiO2 and ZnO dopants in three-dimensionally printed tricalcium phosphate bone tissue engineering scaffolds enhance osteogenesis and angiogenesis in vivo. Acta Biomater. 9(11):9137–9148, 2013.

    Article  CAS  PubMed  Google Scholar 

  9. Forth, W., and W. Rummel. Iron absorption. Physiol. Rev. 53(3):724–792, 1973.

    Article  CAS  PubMed  Google Scholar 

  10. Glatt, V., C. H. Evans, and K. Tetsworth. A concert between biology and biomechanics: the influence of the mechanical environment on bone healing. Front. Physiol. 7:678, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Goldberg, V. M. Natural history of autografts and allografts. In: Bone implant grafting, edited by M. W. J. Older. London: Springer, 1992, pp. 9–12.

    Chapter  Google Scholar 

  12. Gorres, K. L., and R. T. Raines. Prolyl 4-hydroxylase. Crit. Rev. Biochem. Mol. Biol. 45(2):106–124, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jones, A. C., C. H. Arns, D. W. Hutmacher, B. K. Milthorpe, A. P. Sheppard, and M. A. Knackstedt. The correlation of pore morphology, interconnectivity and physical properties of 3D ceramic scaffolds with bone ingrowth. Biomaterials 30(7):1440–1451, 2009.

    Article  CAS  PubMed  Google Scholar 

  14. Jugdaohsingh, R. Silicon and bone health. J. Nutr. Health Aging 11(2):99, 2007.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kannan, S., A. F. Lemos, J. H. Rocha, and J. M. Ferreira. Characterization and mechanical performance of the Mg-stabilized β-Ca3(PO4)2 prepared from Mg-substituted Ca-deficient apatite. J. Am. Ceram. Soc. 89(9):2757–2761, 2006.

    CAS  Google Scholar 

  16. Karageorgiou, V., and D. Kaplan. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27):5474–5491, 2005.

    Article  CAS  Google Scholar 

  17. Katsumata, S. I., R. Katsumata-Tsuboi, M. Uehara, and K. Suzuki. Severe iron deficiency decreases both bone formation and bone resorption in rats. J. Nutr. 139(2):238–243, 2009.

    Article  CAS  PubMed  Google Scholar 

  18. Katsumata, S. I., R. Tsuboi, M. Uehara, and K. Suzuki. Dietary iron deficiency decreases serum osteocalcin concentration and bone mineral density in rats. Biosci. Biotechnol. Biochem. 70(10):2547–2550, 2006.

    Article  CAS  PubMed  Google Scholar 

  19. Khalyfa, A., S. Vogt, J. Weisser, G. Grimm, A. Rechtenbach, W. Meyer, and M. Schnabelrauch. Development of a new calcium phosphate powder-binder system for the 3D printing of patient specific implants. J. Mater. Sci. Mater. Med. 18(5):909–916, 2007.

    Article  CAS  PubMed  Google Scholar 

  20. Li, Y., C. T. Nam, and C. P. Ooi. Iron (III) and manganese (II) substituted hydroxyapatite nanoparticles: characterization and cytotoxicity analysis. J. Phys. 187:012024, 2009.

    Google Scholar 

  21. McGillivray, G., S. A. Skull, G. Davie, S. E. Kofoed, A. Frydenberg, J. Rice, et al. High prevalence of asymptomatic vitamin D and iron deficiency in East African immigrant children and adolescents living in a temperate climate. Arch. Dis. Child. 92(12):1088–1093, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Medeiros, D. M., A. Plattner, D. Jennings, and B. Stoecker. Bone morphology, strength and density are compromised in iron-deficient rats and exacerbated by calcium restriction. J. Nutr. 132(10):3135–3141, 2002.

    Article  CAS  PubMed  Google Scholar 

  23. Miller, T. W., J. S. Isenberg, and D. D. Roberts. Molecular regulation of tumor angiogenesis and perfusion via redox signaling. Chem. Rev. 109(7):3099–3124, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Misch, C. E., Z. Qu, and M. W. Bidez. Mechanical properties of trabecular bone in the human mandible: implications for dental implant treatment planning and surgical placement. J. Oral Maxillofac. Surg. 57(6):700–706, 1999.

    Article  CAS  PubMed  Google Scholar 

  25. Otsuki, B., M. Takemoto, S. Fujibayashi, M. Neo, T. Kokubo, and T. Nakamura. Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials 27(35):5892–5900, 2006.

    Article  CAS  PubMed  Google Scholar 

  26. Price, C. T., K. J. Koval, and J. R. Langford. Silicon: a review of its potential role in the prevention and treatment of postmenopausal osteoporosis. Int. J. Endocrinol. 2013. https://doi.org/10.1155/2013/316783.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Proff, P., and P. Römer. The molecular mechanism behind bone remodelling: a review. Clin. Oral Invest. 13(4):355–362, 2009.

    Article  Google Scholar 

  28. Tang, R., W. Wu, M. Haas, and G. H. Nancollas. Kinetics of dissolution of β-tricalcium phosphate. Langmuir 17(11):3480–3485, 2001.

    Article  CAS  Google Scholar 

  29. Tarafder, S., V. K. Balla, N. M. Davies, A. Bandyopadhyay, and S. Bose. Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering. J. Tissue Eng. Regen. Med. 7(8):631–641, 2013.

    Article  CAS  PubMed  Google Scholar 

  30. Tarafder, S., N. M. Davies, A. Bandyopadhyay, and S. Bose. 3D printed tricalcium phosphate bone tissue engineering scaffolds: effect of SrO and MgO doping on in vivo osteogenesis in a rat distal femoral defect model. Biomater. Sci. 1(12):1250–1259, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vahabzadeh, S., and S. Bose. Effects of iron on physical and mechanical properties, and osteoblast cell interaction in β-tricalcium phosphate. Ann. Biomed. Eng. 45(3):819–828, 2017.

    Article  PubMed  Google Scholar 

  32. Yang, S., K. F. Leong, Z. Du, and C. K. Chua. The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng. 8(1):1–11, 2002.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, M., and H. Ramay. U.S. Patent Application No. 10/846,356, 2005.

Download references

Acknowledgments

Authors would like to acknowledge financial support from the National Institutes of Health under Grant Numbers R01 AR066361 and do not have any possible conflict of interest. The authors would like to acknowledge help from Valerie Lynch-Holm and Dan Mullendore from Franceschi Microscopy & Imaging Center (FMIC), WSU and Washington Animal Disease Diagnostic Lab (WADDL) with the in vivo staining procedures. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susmita Bose.

Additional information

Associate Editor Michael S. Detamore oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bose, S., Banerjee, D., Robertson, S. et al. Enhanced In Vivo Bone and Blood Vessel Formation by Iron Oxide and Silica Doped 3D Printed Tricalcium Phosphate Scaffolds. Ann Biomed Eng 46, 1241–1253 (2018). https://doi.org/10.1007/s10439-018-2040-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-2040-8

Keywords

Navigation