Skip to main content
Log in

Genipin-Cross-Linked Chitosan Nerve Conduits Containing TNF-α Inhibitors for Peripheral Nerve Repair

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Tissue engineered nerve grafts (TENGs) are considered a promising alternative to autologous nerve grafting, which is considered the “gold standard” clinical strategy for peripheral nerve repair. Here, we immobilized tumor necrosis factor-α (TNF-α) inhibitors onto a nerve conduit, which was introduced into a chitosan (CS) matrix scaffold utilizing genipin (GP) as the crosslinking agent, to fabricate CS-GP-TNF-α inhibitor nerve conduits. The in vitro release kinetics of TNF-α inhibitors from the CS-GP-TNF-α inhibitor nerve conduits were investigated using high-performance liquid chromatography. The in vivo continuous release profile of the TNF-α inhibitors released from the CS-GP-TNF-α inhibitor nerve conduits was measured using an enzyme-linked immunosorbent assay over 14 days. We found that the amount of TNF-α inhibitors released decreased with time after the bridging of the sciatic nerve defects in rats. Moreover, 4 and 12 weeks after surgery, histological analyses and functional evaluations were carried out to assess the influence of the TENG on regeneration. Immunochemistry performed 4 weeks after grafting to assess early regeneration outcomes revealed that the TENG strikingly promoted axonal outgrowth. Twelve weeks after grafting, the TENG accelerated myelin sheath formation, as well as functional restoration. In general, the regenerative outcomes following TENG more closely paralleled findings observed with autologous grafting than the use of the CS matrix scaffold. Collectively, our data indicate that the CS-GP-TNF-α inhibitor nerve conduits comprised an elaborate system for sustained release of TNF-α inhibitors in vitro, while studies in vivo demonstrated that the TENG could accelerate regenerating axonal outgrowth and functional restoration. The introduction of CS-GP-TNF-α-inhibitor nerve conduits into a scaffold may contribute to an efficient and adaptive immune microenvironment that can be used to facilitate peripheral nerve repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Akerman, P., P. Cote, S. Q. Yang, C. McClain, S. Nelson, G. J. Bagby, et al. Antibodies to tumor necrosis factor-alpha inhibit liver regeneration after partial hepatectomy. Am. J. Physiol. 263:G579–G585, 1992.

    PubMed  CAS  Google Scholar 

  2. Avellino, A. M., D. Hart, A. T. Dailey, M. MacKinnon, D. Ellegala, and M. Kliot. Differential macrophage responses in the peripheral and central nervous system during wallerian degeneration of axons. Exp. Neurol. 136:183–198, 1995.

    Article  PubMed  CAS  Google Scholar 

  3. Battiston, B., P. Titolo, D. Ciclamini, and B. Panero. Peripheral nerve defects: overviews of practice in Europe. Hand Clin. 33:545–550, 2017.

    Article  PubMed  Google Scholar 

  4. Chiono, V., and C. Tonda-Turo. Trends in the design of nerve guidance channels in peripheral nerve tissue engineering. Prog. Neurobiol. 131:87–104, 2015.

    Article  PubMed  Google Scholar 

  5. Cressman, D. E., L. E. Greenbaum, R. A. DeAngelis, G. Ciliberto, E. E. Furth, V. Poli, et al. Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science. 274:1379–1383, 1996.

    Article  PubMed  CAS  Google Scholar 

  6. Dalamagkas, K., M. Tsintou, and A. Seifalian. Advances in peripheral nervous system regenerative therapeutic strategies: a biomaterials approach. Mater. Sci. Eng. C. 65:425–432, 2016.

    Article  CAS  Google Scholar 

  7. Freeman, M. R. Signaling mechanisms regulating Wallerian degeneration. Curr. Opin. Neurobiol. 27:224–231, 2014.

    Article  PubMed  CAS  Google Scholar 

  8. Gnavi, S., C. Barwig, T. Freier, K. Haastert-Talini, C. Grothe, and S. Geuna. The use of chitosan-based scaffolds to enhance regeneration in the nervous system. Int. Rev. Neurobiol. 109:1–62, 2013.

    Article  PubMed  Google Scholar 

  9. Gomez-Sanchez, J. A., L. Carty, M. Iruarrizaga-Lejarreta, M. Palomo-Irigoyen, M. Varela-Rey, M. Griffith, et al. Schwann cell autophagy, myelinophagy, initiates myelin clearance from injured nerves. J. Cell Biol. 210:153–168, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Gu, X., F. Ding, and D. F. Williams. Neural tissue engineering options for peripheral nerve regeneration. Biomaterials. 35:6143–6156, 2014.

    Article  PubMed  CAS  Google Scholar 

  11. Gu, X., F. Ding, Y. Yang, and J. Liu. Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Prog. Neurobiol. 93:204–230, 2011.

    Article  PubMed  CAS  Google Scholar 

  12. Gurtner, G. C., S. Werner, Y. Barrandon, and M. T. Longaker. Wound repair and regeneration. Nature. 453:314–321, 2008.

    Article  PubMed  CAS  Google Scholar 

  13. He, Z., and Y. Jin. Intrinsic control of axon regeneration. Neuron. 90:437–451, 2016.

    Article  PubMed  CAS  Google Scholar 

  14. Huebner, E. A., and S. M. Strittmatter. Axon regeneration in the peripheral and central nervous systems. Results Probl. Cell Differ. 48:339–351, 2009.

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Jang, S. Y., B. A. Yoon, Y. K. Shin, S. H. Yun, Y. R. Jo, Y. Y. Choi, et al. Schwann cell dedifferentiation-associated demyelination leads to exocytotic myelin clearance in inflammatory segmental demyelination. Glia. 65:1848–1862, 2017.

    Article  PubMed  Google Scholar 

  16. Karin, M., and H. Clevers. Reparative inflammation takes charge of tissue regeneration. Nature. 529:307–315, 2016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Koppes, R. A., S. Park, T. Hood, X. Jia, N. Abdolrahim Poorheravi, A. H. Achyuta, et al. Thermally drawn fibers as nerve guidance scaffolds. Biomaterials. 81:27–35, 2016.

    Article  PubMed  CAS  Google Scholar 

  18. Leung, L., and C. M. Cahill. TNF-alpha and neuropathic pain–a review. J. Neuroinflamm. 7:27, 2010.

    Article  CAS  Google Scholar 

  19. Li, S., C. Xue, Y. Yuan, R. Zhang, Y. Wang, Y. Wang, et al. The transcriptional landscape of dorsal root ganglia after sciatic nerve transection. Sci. Rep. 5:16888, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Liu, Y., L. J. Zhou, J. Wang, D. Li, W. J. Ren, J. Peng, et al. TNF-alpha differentially regulates synaptic plasticity in the hippocampus and spinal cord by microglia-dependent mechanisms after peripheral nerve injury. J. Neurosci. 37:871–881, 2017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Martini, R., S. Fischer, R. Lopez-Vales, and S. David. Interactions between Schwann cells and macrophages in injury and inherited demyelinating disease. Glia. 56:1566–1577, 2008.

    Article  PubMed  Google Scholar 

  22. Mc Guire, C., R. Beyaert, and G. van Loo. Death receptor signalling in central nervous system inflammation and demyelination. Trends Neurosci. 34:619–628, 2011.

    Article  PubMed  CAS  Google Scholar 

  23. Pabari, A., S. Y. Yang, A. M. Seifalian, and A. Mosahebi. Modern surgical management of peripheral nerve gap. JPRAS. 63:1941–1948, 2010.

    PubMed  Google Scholar 

  24. Pateman, C. J., A. J. Harding, A. Glen, C. S. Taylor, C. R. Christmas, P. P. Robinson, et al. Nerve guides manufactured from photocurable polymers to aid peripheral nerve repair. Biomaterials. 49:77–89, 2015.

    Article  PubMed  CAS  Google Scholar 

  25. Raimondo, S., M. Fornaro, P. Tos, B. Battiston, M. G. Giacobini-Robecchi, and S. Geuna. Perspectives in regeneration and tissue engineering of peripheral nerves. Ann. Anat. 193:334–340, 2011.

    Article  PubMed  Google Scholar 

  26. Sadtler, K., K. Estrellas, B. W. Allen, M. T. Wolf, H. Fan, A. J. Tam, et al. Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells. Science. 352:366–370, 2016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Sivashankari, P. R., and M. Prabaharan. Prospects of chitosan-based scaffolds for growth factor release in tissue engineering. Int. J. Biol. Macromol. 93:1382–1389, 2016.

    Article  PubMed  CAS  Google Scholar 

  28. Spivey, E. C., Z. Z. Khaing, J. B. Shear, and C. E. Schmidt. The fundamental role of subcellular topography in peripheral nerve repair therapies. Biomaterials. 33:4264–4276, 2012.

    Article  PubMed  CAS  Google Scholar 

  29. Tang, X., H. Qin, X. Gu, and X. Fu. China’s landscape in regenerative medicine. Biomaterials. 124:78–94, 2017.

    Article  PubMed  CAS  Google Scholar 

  30. Tang, X., Y. Wang, S. Zhou, T. Qian, and X. Gu. Signaling pathways regulating dose-dependent dual effects of TNF-alpha on primary cultured Schwann cells. Mol. Cell Biochem. 378:237–246, 2013.

    Article  PubMed  CAS  Google Scholar 

  31. Tang, X., C. Xue, Y. Wang, F. Ding, Y. Yang, and X. Gu. Bridging peripheral nerve defects with a tissue engineered nerve graft composed of an in vitro cultured nerve equivalent and a silk fibroin-based scaffold. Biomaterials. 33:3860–3867, 2012.

    Article  PubMed  CAS  Google Scholar 

  32. Tzekova, N., A. Heinen, S. Bunk, C. Hermann, H. P. Hartung, B. Reipert, et al. Immunoglobulins stimulate cultured Schwann cell maturation and promote their potential to induce axonal outgrowth. J. Neuroinflamm. 12:107, 2015.

    Article  CAS  Google Scholar 

  33. Vargas, M. E., J. Watanabe, S. J. Singh, W. H. Robinson, and B. A. Barres. Endogenous antibodies promote rapid myelin clearance and effective axon regeneration after nerve injury. PNAS. 107:11993–11998, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wang, Y., X. Tang, B. Yu, Y. Gu, Y. Yuan, D. Yao, et al. Gene network revealed involvements of Birc2, Birc3 and Tnfrsf1a in anti-apoptosis of injured peripheral nerves. PLoS ONE. 7:e43436, 2012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Wong, K. M., E. Babetto, and B. Beirowski. Axon degeneration: make the Schwann cell great again. Neural Regen. Res. 12:518–524, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yang, Y., W. Zhao, J. He, Y. Zhao, F. Ding, and X. Gu. Nerve conduits based on immobilization of nerve growth factor onto modified chitosan by using genipin as a crosslinking agent. Eur. J. Pharm. Biopharm. 79:519–525, 2011.

    Article  PubMed  CAS  Google Scholar 

  37. Yi, S., X. Tang, J. Yu, J. Liu, F. Ding, and X. Gu. Microarray and qPCR analyses of wallerian degeneration in rat sciatic nerves. Front. Cell. Neurosci. 11:22, 2017.

    PubMed  PubMed Central  Google Scholar 

  38. Zhao, Y., Y. Wang, J. Gong, L. Yang, C. Niu, X. Ni, et al. Chitosan degradation products facilitate peripheral nerve regeneration by improving macrophage-constructed microenvironments. Biomaterials. 134:64–77, 2017.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We appreciate the financial support from the National Key Research and Development Program of China (No. 2016YFC1101603), National Natural Science Foundation of China (Nos. 81370043 and 81671823), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author Contributions

XT and YY designed the research; LZ, WZ, CN, YZ, HS and XT performed the experiments; LZ, CN, YZ, HS, YW, YY, and XT analyzed data; XT wrote the paper.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yumin Yang or Xin Tang.

Additional information

Associate Editor Michael Gower oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zhao, W., Niu, C. et al. Genipin-Cross-Linked Chitosan Nerve Conduits Containing TNF-α Inhibitors for Peripheral Nerve Repair. Ann Biomed Eng 46, 1013–1025 (2018). https://doi.org/10.1007/s10439-018-2011-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-2011-0

Keywords

Navigation