Skip to main content
Log in

Investigating the Longitudinal Effect of Ovariectomy on Bone Properties Using a Novel Spatiotemporal Approach

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Osteoporosis is the most common bone disease. However, the mechanism of osteoporosis-induced alterations in bone is still unclear. The aim of this study was to investigate the effects of osteoporosis on the structural, densitometric and mechanical properties of the whole tibia using in vivo μCT imaging, spatiotemporal analysis and finite element modeling. Twelve C57Bl/6 female mice were adopted. At 14 weeks of age, half of the mice were ovariectomized (OVX), and the other half were SHAM-operated. The whole right tibia was scanned using an in vivo μCT imaging system at 14, 16, 17, 18, 19, 20, 21 and 22 weeks. The image datasets were registered in order to precisely quantify the bone properties. The results showed that OVX led to a significant increase in the endosteal area across the whole tibia 4 weeks after OVX intervention but did not have a significant influence on the periosteal area. Additionally, the bone volume and mineral content significantly decreased only in the proximal regions, but these decreases did not have a significant influence on the stiffness and failure load of the tibia. This study demonstrated the application of a novel spatiotemporal approach in the comprehensive analysis of bone adaptations in the spatiotemporal space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Altman, A. R., W. J. Tseng, C. M. de Bakker, A. Chandra, S. Lan, B. K. Huh, S. Luo, M. B. Leonard, L. Qin, and X. S. Liu. Quantification of skeletal growth, modeling, and remodeling by in vivo micro computed tomography. Bone 81:370–379, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ashman, R. B., S. C. Cowin, W. C. van Bushirk, and J. C. Rice. A continuous was technique for the measurement of the elastic properties of cortical bone. J. Biomech. 19:349–361, 1984.

    Article  Google Scholar 

  3. Ausk, B. J., P. Huber, S. Srinivasan, S. D. Bain, R. Y. Kwon, E. A. McNamara, S. L. Poliachik, C. L. Sybrowsky, and T. S. Gross. Metaphyseal and diaphyseal bone loss in the tibia following transient muscle paralysis are spatiotemporally distinct resorption events. Bone 57(2):413–422, 2013.

    Article  PubMed  Google Scholar 

  4. Bayraktar, H. H., E. F. Morgan, G. L. Niebur, G. E. Morris, E. K. Wong, and T. M. Keaveny. Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J. Biomech. 37:27–35, 2004.

    Article  PubMed  Google Scholar 

  5. Birkhold, A. I., H. Razi, R. Weinkamer, G. N. Duda, S. Checa, and B. M. Willie. Monitoring in vivo (re)modeling: a computational approach using 4D microCT data to quantify bone surface movements. Bone 75:210–221, 2015.

    Article  PubMed  Google Scholar 

  6. Bouxsein, M. L., S. K. Boyd, B. A. Christiansen, R. E. Guldberg, K. J. Jepsen, and R. Müller. Guidelines for assessment of bone microstructure in rodents using microcomputed tomography. J. Bone Miner. Res. 25(7):1468–1486, 2010.

    Article  PubMed  Google Scholar 

  7. Bouxsein, M. L., K. S. Myers, K. L. Shultz, L. R. Donahue, C. J. Rosen, and W. G. Beamer. Ovariectomy-induced bone loss varies among inbred strains of mice. J. Bone Miner. Res. 20:1086–1092, 2005.

    Article  Google Scholar 

  8. Boyd, S. K., P. Davison, R. Müller, and J. A. Gasser. Monitoring individual morphological changes over time in ovariectomized rats by in vivo micro-computed tomography. Bone 39:854–862, 2006.

    Article  PubMed  Google Scholar 

  9. Buie, H. R., G. M. Campbell, J. Klinck, J. A. MacNeil, and S. K. Boyd. Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis. Bone 41:505–515, 2007.

    Article  PubMed  Google Scholar 

  10. Campbell, G. M., R. Bernhardt, D. Scharnweber, and S. K. Boyd. The bone architecture is enhanced with combined PTH and alendronate treatment compared to monotherapy while maintaining the state of surface mineralization in the OVX rat. Bone 49:225–232, 2011.

    Article  CAS  PubMed  Google Scholar 

  11. Campbell, G. M., S. Tiwari, F. Grundmann, N. Purcz, C. Schem, and C. C. Gluer. Three-dimensional image registration improves the long-term precision of in vivo micro-computed tomographic measurements in anabolic and catabolic mouse models. Calcif. Tissue Int. 94:282–292, 2014.

    Article  CAS  PubMed  Google Scholar 

  12. Chen, Y., E. Dall’Ara, K. Manda, E. Sales, R. Wallace, and P. Pankaj. Micro-CT based finite element models of cancellous bone predict accurately displacement once the boundary condition is well replicated: a validation study. J. Mech. Behav. Biomed. Mater. 65:644–651, 2017.

    Article  PubMed  Google Scholar 

  13. Costa, M. C., G. Tozzi, L. Cristofolini, V. Danesi, M. Viceconti, and E. DallAra. Micro finite element models of the vertebral body: validation of local displacement predictions. PLoS ONE 12(7):e0180151, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dall’Ara, E., D. Barber, and M. Viceconti. About the inevitable compromise between spatial resolution and accuracy of strain measurement for bone tissue: a 3D zero-strain study. J. Biomech. 47:2956–2963, 2014.

    Article  PubMed  Google Scholar 

  15. de Bakker, C. M., A. R. Altman, W. J. Tseng, M. B. Tribble, C. Li, A. Chandra, L. Qin, and X. S. Liu. microCT-based, in vivo dynamic bone histomorphometry allows 3D evaluation of the early responses of bone resorption and formation to PTH and alendronate combination therapy. Bone 73:198–207, 2015.

    Article  PubMed  Google Scholar 

  16. Easley, S. K., M. G. Jekir, A. J. Burghardt, M. Li, and T. M. Keavey. Contribution of the intra-specimen variations in tissue mineralization to PHT- and raloxifene-induced changes in stiffness of rat vertebrae. Bone 46:1162–1169, 2010.

    Article  CAS  PubMed  Google Scholar 

  17. Glatt, V., E. Canalis, L. Stadmeyer, and M. Bouxsein. Age-related changes in trabecular architecture differ in female and male C57BL/6 J mice. J. Bone Miner. Res. 22(8):1197–1207, 2007.

    Article  PubMed  Google Scholar 

  18. Klinck, J., and S. K. Boyd. The magnitude and rate of bone loss in ovariectomized mice differs among inbred strains as determined by longitudinal in vivo micro-computed tomography. Calcif. Tissue Int. 83:70–79, 2008.

    Article  CAS  PubMed  Google Scholar 

  19. Klinck, J., G. M. Campbell, and S. K. Boyd. Radiation effects on bone architecture in mice and rats resulting from in vivo micro-computed tomography scanning. Med. Eng. Phys. 30:888–895, 2008.

    Article  PubMed  Google Scholar 

  20. Laib, A., O. Barou, L. Vico, M. H. Lafage-Proust, C. Alexandre, and P. Rügsegger. 3D micro-computed tomography of trabecular and cortical bone architecture with application to a rat model of immobilisation osteoporosis. Med. Biol. Eng. Comput. 38:326–332, 2000.

    Article  CAS  PubMed  Google Scholar 

  21. Laib, A., J. L. Kumer, S. Majumdar, and N. E. Lane. The temporal changes of trabecular architecture in ovariectomized rats assessed by microCT. Osteoporos. Int. 12:936–941, 2001.

    Article  CAS  PubMed  Google Scholar 

  22. Lambers, F. M., G. Kuhn, F. A. Schulte, K. Koch, and R. Müller. Longitudinal assessment of in vivo bone dynamics in a mouse tail model of postmenopausal osteoporosis. Calcif. Tissue Int. 90:108–119, 2012.

    Article  CAS  PubMed  Google Scholar 

  23. Levchuk, A., A. Zwahlen, C. Weigt, F. M. Lambers, S. D. Badilatti, F. A. Schulte, G. Kuhn, and R. Mueller. Large scale simulations of trabecular bone adaptation to loading and treatment. Clin. Biomech. 29(4):355–362, 2014.

    Article  Google Scholar 

  24. Lu, Y., M. Boudiffa, E. Dall Ara, I. Bellantuono, and M. Viceconti. Evaluation of in vivo measurement errors associated with micro-computed tomography scans by means of the bone surface distance approach. Med. Eng. Phys. 37:1091–1097, 2015.

    Article  PubMed  Google Scholar 

  25. Lu, Y., M. Boudiffa, E. Dall Ara, I. Bellantuono, and M. Viceconti. Development of a protocol to quantify local bone adaptation over space and time: quantification of reproducibility. J. Biomech. 49:2095–2099, 2016.

    Article  PubMed  Google Scholar 

  26. Lu, Y., M. Boudiffa, E. Dall’Ara, Y. Liu, I. Bellantuono, and M. Viceconti. Longitudinal effects of Parathyroid Hormone treatment on morphological, densitometric and mechanical properties of mouse tibia. J. Mech. Behav. Biomed. Mater. 75:244–251, 2017.

    Article  CAS  PubMed  Google Scholar 

  27. Patel, T. K., M. D. Brodt, and M. J. Silva. Experimental and finite element analysis of strains induced by axial tibial compression in young-adult and old female C57Bl/6 mice. J. Biomech. 47:451–457, 2014.

    Article  PubMed  Google Scholar 

  28. Pereira, A. F., B. Javaheri, A. A. Pitsillides, and S. J. Shefelbine. Predicting cortical bone adaptation to axial loading in the mouse tibia. J. R. Soc. Interface 12(110):0590, 2015.

    Article  CAS  PubMed  Google Scholar 

  29. Pistoia, W., B. van Rietbergen, E. M. Lochmueller, C. A. Lill, F. Eckstein, and P. Ruegsegger. Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone 30(6):842–848, 2002.

    Article  CAS  PubMed  Google Scholar 

  30. Prasad, J., B. P. Wiater, S. E. Nork, S. D. Bain, and T. S. Gross. Characterizing gait induced normal strains in a murine tibia cortical bone defect model. J. Biomech 43:2765–2770, 2010.

    Article  PubMed  Google Scholar 

  31. Qasim, M., G. Farinella, J. Zhang, X. Li, L. Yang, R. Eastell, and M. Viceconti. Patient-specific finite element estimated femur strength as a predictor of the risk of hip fracture: the effect of methodological determinants. Osteoporos. Int. 27(9):2815–2822, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Razi, H., A. I. Birkhold, P. Zaslansky, R. Weinkamer, G. N. Duda, B. M. Willie, and S. Checa. Skeletal maturity leads to a reduction in the strain magnitudes induced within the bone: a murine tibia study. Acta Biomater. 13:301–310, 2015.

    Article  PubMed  Google Scholar 

  33. Riggs, B. L., and L. J. Melton. The worldwide problem of osteoporosis: insights afforded by edidemiology. Bone 17:505s–511s, 1995.

    Article  CAS  PubMed  Google Scholar 

  34. Somerville, J. M., R. M. Aspden, K. E. Armour, and D. M. Reid. Growth of C57Bl/6 mice and the material and mechanical properties of cortical bone from the tibia. Calcif. Tissue Int. 74:469–475, 2004.

    Article  CAS  PubMed  Google Scholar 

  35. Vickerton, P., J. C. Jarvis, J. A. Gallagher, R. Akhtar, H. Sutherland, and N. Jeffery. Morphological and histological adaptation of muscle and bone to loading induced by repetitive activation of muscle. Proc. Biol. Sci. 281:20140786, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Webster, D. J., P. L. van Morley, G. H. Lethe, and R. Mueller. A novel in vivo mouse model for mechanically stimulated bone adaptation—a combined experimental and computational validation study. Comput. Methods Biomech. Biomed. Eng. 11:435–441, 2008.

    Article  Google Scholar 

  37. Wernle, J. D., T. A. Damron, M. J. Allen, and K. A. Mann. Local irradiation alters bone morphology and increases bone fragility in a mouse model. J. Biomech. 43:2738–2746, 2010.

    Article  PubMed  Google Scholar 

  38. Yang, H., K. D. Butz, D. Duffy, G. L. Niebur, E. A. Nauman, and R. P. Main. Characterization of cancellous and cortical bone strain in the in vivo mouse tibial loading model using microCT-based finite element analysis. Bone 66:131–139, 2014.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (11702057, 11772086), and the Open Fund from the State Key Laboratory of Structural Analysis for Industrial Equipment (GZ1611). The raw data analyzed and reported in this paper are obtained from the project funded by the UK National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), grant number: NC/K000780/1. The raw data are available in Open Access under CC-BY-NC license and can be retrieved with the following https://doi.org/10.15131/shef.data.3814701.

Conflict of interest

The authors declare that there are no financial or personal relationships with other persons or organizations that might inappropriately influence this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chengwei Wu or Junyan Li.

Additional information

Associate Editor Joel D. Stitzel oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Liu, Y., Wu, C. et al. Investigating the Longitudinal Effect of Ovariectomy on Bone Properties Using a Novel Spatiotemporal Approach. Ann Biomed Eng 46, 749–761 (2018). https://doi.org/10.1007/s10439-018-1994-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-1994-x

Keywords

Navigation