Skip to main content
Log in

Template for MR Visualization and Needle Targeting

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

To improve the targeting accuracy and reduce procedure time in magnetic resonance imaging (MRI)-guided procedures, a 3D-printed flexible template was developed. The template was printed using flexible photopolymer resin FLFLGR02 in Form 2 printer® (Formlabs, Inc., Somerville, MA). The flexible material gives the template a unique advantage by allowing it to make close contact with human skin and provide accurate insertion with the help of the newly developed OncoNav software. At the back of the template, there is a grid comprised of circular containers filled with contrast agent. At the front of the template, the guide holes between the containers provide space and angular flexibility for needle insertion. MRI scans are initially used to identify tumor position as well as the template location. The OncoNav software then pre-selects a best guide hole for targeting a specific lesion and suggests insertion depth for the physician A phantom study of 13 insertions in a CT scanner was carried out for assessing needle placement accuracy. The mean total distance error between planned and actual insertion is 2.7 mm, the maximum error was 4.78 mm and standard deviation was 1.1 mm. The accuracy of the OncoNav-assisted and template-guided needle targeting is comparable to the robot-assisted procedure. The proposed template is a low-cost, quickly-deployable and disposable medical device. The presented technology will be further evaluated in prostate cancer patients to quantify its accuracy in needle biopsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Anastasiadis, A. G., M. P. Lichy, U. Nagele, M. A. Kuczyk, A. S. Merseburger, J. Hennenlotter, S. Corvin, K. D. Sievert, C. D. Claussen, A. Stenzl, and H. P. Schlemmer. MRI-guided biopsy of the prostate increases diagnostic performance in men with elevated or increasing PSA levels after previous negative TRUS biopsies. Eur. Urol. 50:738–748; discussion 748–739, 2006.

  2. Arsov, C., R. Rabenalt, D. Blondin, M. Quentin, A. Hiester, E. Godehardt, H. E. Gabbert, N. Becker, G. Antoch, and P. Albers. Prospective randomized trial comparing magnetic resonance imaging (MRI)-guided in-bore biopsy to MRI-ultrasound fusion and transrectal ultrasound-guided prostate biopsy in patients with prior negative biopsies. Eur. Urol. 68:713–720, 2015.

    Article  PubMed  Google Scholar 

  3. Ayres, B. E., B. S. Montgomery, N. J. Barber, N. Pereira, S. E. Langley, P. Denham, and S. R. Bott. The role of transperineal template prostate biopsies in restaging men with prostate cancer managed by active surveillance. BJU Int. 109:1170–1176, 2012.

    Article  PubMed  Google Scholar 

  4. Begley, S. Thousands of men with prostate cancer get risky treatment they don’t need. New approaches could curb that. STAT, 2017. https://www.statnews.com/2017/05/04/prostate-cancer-research-psa/. Accessed 16 July 2017.

  5. Beyersdorff, D., A. Winkel, B. Hamm, S. Lenk, S. A. Loening, and M. Taupitz. MR Imaging-guided prostate biopsy with a closed MR unit at 1.5 T: initial results. Radiology 234:576–581, 2005.

    Article  PubMed  Google Scholar 

  6. Chen, Y., S. Zhang, F. Gao, Y. Chen, J. He, and T. Qi. TRUS/MRI fusion-guided prostate biopsy based on improved intracavitary markers. In: Proceedings of the International Conference on Bioinformatics and Computational Intelligence. ACM, 2017, pp. 6–10.

  7. Cornud, F., J. Bomers, J. Futterer, S. Ghai, J. Reijnen, and C. Tempany. MR imaging-guided prostate interventional imaging: ready for a clinical use? Diagn. Interv. Imaging 2018. https://doi.org/10.1016/j.diii.2018.08.002.

    Article  PubMed  Google Scholar 

  8. Cornud, F., M. Roumiguié, N. B. de Longchamps, G. Ploussard, E. Bruguière, D. Portalez, and B. Malavaud. Precision matters in MR imaging-targeted prostate biopsies: evidence from a prospective study of cognitive and elastic fusion registration transrectal biopsies. Radiology 287:534–542, 2018.

    Article  PubMed  Google Scholar 

  9. D’Amico, A., C. Tempany, R. Cormack, N. Hata, M. Jinzaki, K. Tuncali, M. Weinstein, and J. Richie. Transperineal magnetic resonance image guided prostate biopsy. J. Urol. 164:385–387, 2000.

    Article  PubMed  Google Scholar 

  10. DiMaio, S. P., S. Pieper, K. Chinzei, N. Hata, S. J. Haker, D. F. Kacher, G. Fichtinger, C. M. Tempany, and R. Kikinis. Robot-assisted needle placement in open MRI: system architecture, integration and validation. Comput. Aided Surg. 12(1):15–24, 2007.

    Article  CAS  PubMed  Google Scholar 

  11. DiMaio, S. P., G. S. Fischer, S. J. Haker, N. Hata, I. Iordachita, C. M. Tempany, R. Kikinis, and G. Fichtinger. A system for MRI-guided prostate interventions. In: The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006, pp. 68–73.

  12. Engelhard, K., H. P. Hollenbach, B. Kiefer, A. Winkel, K. Goeb, and D. Engehausen. Prostate biopsy in the supine position in a standard 1.5-T scanner under real time MR-imaging control using a MR-compatible endorectal biopsy device. Eur. Radiol. 16:1237–1243, 2006.

    Article  CAS  PubMed  Google Scholar 

  13. Fichtinger, G., A. Krieger, R. C. Susil, A. Tanacs, L. L. Whitcomb, and E. Atalar. Transrectal prostate biopsy inside closed MRI scanner with remote actuation, under real-time image guidance. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2002: 5th International Conference Tokyo, Japan, 2002 Proceedings, Part I, September 25–28, edited by T. Dohi and R. Kikinis. Berlin: Springer Berlin Heidelberg, 2002, pp. 91–98.

  14. Haas, G. P., N. Delongchamps, O. W. Brawley, C. Y. Wang, and G. de la Roza. The worldwide epidemiology of prostate cancer: perspectives from autopsy studies. Can. J. Urol. 15:3866–3871, 2008.

    PubMed  PubMed Central  Google Scholar 

  15. Haker, S. J., R. V. Mulkern, J. R. Roebuck, A. S. Barnes, S. DiMaio, N. Hata, and C. M. C. Tempany. Magnetic resonance-guided prostate interventions. Top. Magn. Reson. Imaging 16:355–368, 2005.

    Article  PubMed  Google Scholar 

  16. Hata, N., M. Jinzaki, D. Kacher, R. Cormak, D. Gering, A. Nabavi, S. G. Silverman, A. V. D’Amico, R. Kikinis, F. A. Jolesz, and C. M. C. Tempany. MR imaging-guided prostate biopsy with surgical navigation software: device validation and feasibility. Radiology 220:263–268, 2001.

    Article  CAS  PubMed  Google Scholar 

  17. Hausmann, D., N. Aksöz, J. von Hardenberg, T. Martini, N. Westhoff, S. Buettner, S. O. Schoenberg, and P. Riffel. Prostate cancer detection among readers with different degree of experience using ultra-high b-value diffusion-weighted imaging: is a non-contrast protocol sufficient to detect significant cancer? Eur. Radiol. 28:869–876, 2018.

    Article  CAS  PubMed  Google Scholar 

  18. Jemal, A., R. Siegel, J. Xu, and E. Ward. Cancer statistics, 2010. CA Cancer J. Clin. 60:277–300, 2010.

    Article  PubMed  Google Scholar 

  19. Kasivisvanathan, V., A. S. Rannikko, M. Borghi, V. Panebianco, L. A. Mynderse, M. H. Vaarala, A. Briganti, L. Budäus, G. Hellawell, R. G. Hindley, M. J. Roobol, S. Eggener, M. Ghei, A. Villers, F. Bladou, G. M. Villeirs, J. Virdi, S. Boxler, G. Robert, P. B. Singh, W. Venderink, B. A. Hadaschik, A. Ruffion, J. C. Hu, D. Margolis, S. Crouzet, L. Klotz, S. S. Taneja, P. Pinto, I. Gill, C. Allen, F. Giganti, A. Freeman, S. Morris, S. Punwani, N. R. Williams, C. Brew-Graves, J. Deeks, Y. Takwoingi, M. Emberton, and C. M. Moore. MRI-targeted or standard biopsy for prostate-cancer diagnosis. N. Engl. J. Med. 378:1767–1777, 2018.

    Article  PubMed  Google Scholar 

  20. Krieger, A., R. C. Susil, C. Menard, J. A. Coleman, G. Fichtinger, E. Atalar, and L. L. Whitcomb. Design of a novel MRI compatible manipulator for image guided prostate interventions. IEEE Trans. Biomed. Eng. 52:306–313, 2005.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kuru, T. H., J. Herden, V. Zugor, I. Akbarov, D. Pfister, D. Porres, and A. Heidenreich. How to perform image-guided prostate biopsy: in-bore and fusion approaches. Eur. Urol. Focus 2:151, 2016.

    Article  PubMed  Google Scholar 

  22. Moreira, P., G. van de Steeg, T. Krabben, J. Zandman, E. E. Hekman, F. van der Heijden, R. Borra, and S. Misra. The MIRIAM Robot: a novel robotic system for MR-guided needle insertion in the prostate. J. Med. Robot. Res 2:1750006, 2017.

    Article  Google Scholar 

  23. Noras. Biopsy Unit for GE 8-Channel Breast Coil. Hoechberg: Noras MRI Products, 2015.

    Google Scholar 

  24. Pahwa, S., N. K. Schiltz, L. E. Ponsky, Z. Lu, M. A. Griswold, and V. Gulani. Cost-effectiveness of MR imaging-guided strategies for detection of prostate cancer in biopsy-naive men. Radiology 285:157–166, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pepe, P., A. Garufi, G. D. Priolo, A. Galia, F. Fraggetta, and M. Pennisi. Is it time to perform only MRI targeted cores? Our experience in 1032 men submitted to prostate biopsy. J. Urol. 200:774–778, 2018.

    Article  PubMed  Google Scholar 

  26. Pepe, P., A. Garufi, G. Priolo, and M. Pennisi. Can MRI/TRUS fusion targeted biopsy replace saturation prostate biopsy in the re-evaluation of men in active surveillance? World J. Urol. 34:1249–1253, 2016.

    Article  PubMed  Google Scholar 

  27. Pinkstaff, D. M., T. C. Igel, S. P. Petrou, G. A. Broderick, M. J. Wehle, and P. R. Young. Systematic transperineal ultrasound-guided template biopsy of the prostate: three-year experience. Urology 65:735–739, 2005.

    Article  PubMed  Google Scholar 

  28. Pondman, K. M., J. J. Futterer, B. ten Haken, L. J. Schultze Kool, J. A. Witjes, T. Hambrock, K. J. Macura, and J. O. Barentsz. MR-guided biopsy of the prostate: an overview of techniques and a systematic review. Eur. Urol. 54:517–527, 2008.

    Article  PubMed  Google Scholar 

  29. Rastinehad, A. R., B. Turkbey, S. S. Salami, O. Yaskiv, A. K. George, M. Fakhoury, K. Beecher, M. A. Vira, L. R. Kavoussi, and D. N. Siegel. Improving detection of clinically significant prostate cancer: magnetic resonance imaging/transrectal ultrasound fusion guided prostate biopsy. J. Urol. 191:1749–1754, 2014.

    Article  PubMed  Google Scholar 

  30. Reusz, G., P. Sarkany, J. Gal, and A. Csomos. Needle-related ultrasound artifacts and their importance in anaesthetic practice. Br. J. Anaesth. 112:794–802, 2014.

    Article  CAS  PubMed  Google Scholar 

  31. Sciarra, A., V. Panebianco, M. Ciccariello, S. Salciccia, S. Cattarino, D. Lisi, A. Gentilucci, A. Alfarone, S. Bernardo, and R. Passariello. Value of magnetic resonance spectroscopy imaging and dynamic contrast-enhanced imaging for detecting prostate cancer foci in men with prior negative biopsy. Clin. Cancer Res. 2010. https://doi.org/10.1158/1078-0432.CCR-09-2195.

    Article  PubMed  Google Scholar 

  32. Sperling, D. Problems with transrectal ultrasound-guided prostate biopsy. Sperling Medical Group, 2017. https://sperlingprostatecenter.com/problems-with-transrectal-ultrasound-guided-prostate-biopsy/. Accessed 27 July 2017.

  33. Srimathveeravalli, G., C. Kim, D. Petrisor, P. Ezell, J. Coleman, H. Hricak, S. B. Solomon, and D. Stoianovici. MRI-safe robot for targeted transrectal prostate biopsy: animal experiments. BJU Int. 113:977–985, 2014.

    Article  PubMed  Google Scholar 

  34. Susil, R. C., C. Ménard, A. Krieger, J. A. Coleman, K. Camphausen, P. Choyke, G. Fichtinger, L. L. Whitcomb, C. N. Coleman, and E. Atalar. Transrectal prostate biopsy and fiducial marker placement in a standard 1.5 T magnetic resonance imaging scanner. J. Urol. 175:113–120, 2006.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Taira, A. V., G. S. Merrick, R. W. Galbreath, H. Andreini, W. Taubenslag, R. Curtis, W. M. Butler, E. Adamovich, and K. E. Wallner. Performance of transperineal template-guided mapping biopsy in detecting prostate cancer in the initial and repeat biopsy setting. Prostate Cancer Prostatic Dis. 13:71, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tokuda, J., K. Tuncali, I. Iordachita, S. Song, A. Fedorov, S. Oguro, A. Lasso, F. Fennessy, Y. Tang, and C. Tempany. Preliminary accuracy evaluation of 3 T MRI-guided transperineal prostate biopsy with grid template. In: Proceedings of the International Society for Magnetic Resonance in Medicine, 2011, pp. 7–13.

  37. Venderink, W., T. M. Govers, M. de Rooij, J. J. Fütterer, and J. M. Sedelaar. Cost-effectiveness comparison of imaging-guided prostate biopsy techniques: systematic transrectal ultrasound, direct in-bore MRI, and image fusion. Am. J. Roentgenol. 208:1058–1063, 2017.

    Article  Google Scholar 

  38. Vourganti, S., A. Rastinehad, N. K. Yerram, J. Nix, D. Volkin, A. Hoang, B. Turkbey, G. N. Gupta, J. Kruecker, and W. M. Linehan. Multiparametric magnetic resonance imaging and ultrasound fusion biopsy detect prostate cancer in patients with prior negative transrectal ultrasound biopsies. J. Urol. 188:2152–2157, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Webb. The Fast Find Grid. Philadelphia: Webb Medical, 2017.

    Google Scholar 

  40. Xu, S., J. Kruecker, B. Turkbey, N. Glossop, A. K. Singh, P. Choyke, P. Pinto, and B. J. Wood. Real-time MRI–TRUS fusion for guidance of targeted prostate biopsies. Comput. Aided Surg. Off. J. Int. Soc. Comput. Aided Surg. 13:255–264, 2008.

    Article  Google Scholar 

  41. Civco. Disposable Template Grids. Civco Medical Solutions, 2017.

Download references

Acknowledgments

This study was supported in part by the National Institutes of Health (NIH) Bench-to-Bedside Award, the National Science Foundation (NSF) I-Corps Team Grants (1617340) and (1836894), NSF REU Site Program 1359095, the UGA-AU Inter-institutional Seed Funding, the American Society for Quality Dr. Richard J. Schlesinger Grant, the PHS Grant UL1TR000454 from the Clinical and Translational Science Award Program, the NIH National Center for Advancing Translational Sciences, and NIH Center for Interventional Oncology and the NIH Intramural Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zion T. H. Tse.

Additional information

Associate Editor Michael Gower oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Xu, S., Bakhutashvili, I. et al. Template for MR Visualization and Needle Targeting. Ann Biomed Eng 47, 524–536 (2019). https://doi.org/10.1007/s10439-018-02167-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-02167-z

Keywords

Navigation