Skip to main content
Log in

Anisotropic Permeability of Trabecular Bone and its Relationship to Fabric and Architecture: A Computational Study

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

An Erratum to this article was published on 10 April 2017

Abstract

Trabecular bone is a porous, mineralized tissue found in vertebral bodies, the metaphyses and epiphyses of long bones, and in the irregular and flat shaped bones. The pore space is filled with bone marrow, a highly cellular fluid. Together, the bone and marrow behave as a poroelastic solid. In poroelasticity theory, the permeability is the primary material property that governs the momentum transfer between the solid and fluid constituents. In the linearized theory, the permeability of a material depends on the shape and connectivity of the pores. Developing a model of the relationship between trabecular microarchitecture and permeability could lead to improved simulations of trabecular bone mechanical response, which can be used to investigate bone adaptation, mechanobiological signaling, and progression of diseases such as osteoporosis. This study used finite element models of the trabecular pore space to calculate the complete anisotropic permeability tensor of 12 human and 18 porcine femoral trabecular bone samples. The sensitivity of the simulations to model assumptions and post-processing was analyzed to improve confidence in the result. The orthotropic permeability tensor depended on the fabric tensor, trabecular spacing, and structure model index through a power law relationship. Porosity and fabric alone also provided a reasonable prediction, which may be useful in cases where the image resolution is insufficient to obtain detailed measures of architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Abdalrahman, T., S. Scheiner, and C. Hellmich. Is trabecular bone permeability governed by molecular ordering-induced fluid viscosity gain? Arguments from re-evaluation of experimental data in the framework of homogenization theory. J. Theor. Biol. 365:433–444, 2015.

    Article  CAS  PubMed  Google Scholar 

  2. Arramon, Y. P., and E. A. Nauman. The intrinsic permeability of cancellous bone. In: The Bone Mechanics Handbook, edited by S. C. Cowin. New York: CRC, 2001.

    Google Scholar 

  3. Atkin, R. J., and R. E. Craine. Continuum theories of mixtures—basic theory and historical development. Q. J. Mech. Appl. Math. 29:209–244, 1976.

    Article  Google Scholar 

  4. Bathe, K. J., and H. Zhang. A flow-condition-based interpolation finite element procedure for incompressible fluid flows. Comput. Struct. 80:1267–1277, 2002.

    Article  Google Scholar 

  5. Biot, M. A. General theory of three-dimensional consolidation. J. Appl. Phys. 12:155–164, 1941.

    Article  Google Scholar 

  6. Birmingham, E., J. A. Grogan, G. L. Niebur, L. M. McNamara, and P. E. McHugh. Computational modelling of the mechanics of trabecular bone and marrow using fluid structure interaction techniques. Ann. Biomed. Eng. 41:814–826, 2013.

    Article  CAS  PubMed  Google Scholar 

  7. Birmingham, E., T. C. Kreipke, E. B. Dolan, T. R. Coughlin, P. Owens, L. M. McNamara, G. L. Niebur, and P. E. McHugh. Mechanical stimulation of bone marrow in situ induces bone formation in trabecular explants. Ann. Biomed. Eng. 43:1036–1050, 2014.

    Article  PubMed  Google Scholar 

  8. Bryant, J. D., T. David, P. H. Gaskell, S. King, and G. Lond. Rheology of bovine bone marrow. Proc. Inst. Mech. Eng. H 203:71–75, 1989.

    Article  CAS  PubMed  Google Scholar 

  9. Carballido-Gamio, J., R. Harnish, I. Saeed, T. Streeper, S. Sigurdsson, S. Amin, E. J. Atkinson, T. M. Therneau, K. Siggeirsdottir, X. Cheng, L. J. Melton, 3rd, J. Keyak, V. Gudnason, S. Khosla, T. B. Harris, and T. F. Lang. Proximal femoral density distribution and structure in relation to age and hip fracture risk in women. J. Bone Mineral Res. 28:537–546, 2013.

    Article  Google Scholar 

  10. Carman, P. C. Fluid flow through granular beds. Chem. Eng. Res. Des. 15:415–421, 1937.

    Google Scholar 

  11. Chen, X. M., and T. D. Papathanasiou. On the variability of the Kozeny constant for saturated flow across unidirectional disordered fiber arrays. Composites A 37:836–846, 2006.

    Article  Google Scholar 

  12. Coughlin, T. R., and G. L. Niebur. Fluid shear stress in trabecular bone marrow due to low-magnitude high-frequency vibration. J. Biomech. 45:2222–2229, 2012.

    Article  PubMed  Google Scholar 

  13. Coughlin, T. R., J. Schiavi, M. Alyssa Varsanik, M. Voisin, E. Birmingham, M. G. Haugh, L. M. McNamara, and G. L. Niebur. Primary cilia expression in bone marrow in response to mechanical stimulation in explant bioreactor culture. Eur. Cell Mater. 32:111–122, 2016.

    Article  CAS  PubMed  Google Scholar 

  14. Cowin, S. C. The relationship between the elasticity tensor and the fabric tensor. Mech. Mater. 4:137–147, 1985.

    Article  Google Scholar 

  15. Cowin, S. C. Bone poroelasticity. J. Biomech. 32:217–238, 1999.

    Article  CAS  PubMed  Google Scholar 

  16. Cowin, S. C. A recasting of anisotropic poroelasticity in matrices of tensor components. Transp. Porous Media 50:35–56, 2003.

    Article  Google Scholar 

  17. Cowin, S. C. Anisotropic poroelasticity: fabric tensor formulation. Mech. Mater. 36:665–677, 2004.

    Article  Google Scholar 

  18. Dickerson, D. A., E. A. Sander, and E. A. Nauman. Modeling the mechanical consequences of vibratory loading in the vertebral body: microscale effects. Biomech. Model. Mechanobiol. 7:191–202, 2008.

    Article  CAS  PubMed  Google Scholar 

  19. Downey, D. J., P. A. Simkin, and R. Taggart. The effect of compressive loading on intraosseous pressure in the femoral head in vitro. J. Bone Joint Surg. Am. 70:871–877, 1988.

    Article  CAS  PubMed  Google Scholar 

  20. Ferguson, S. J., K. Ito, and L. P. Nolte. Fluid flow and convective transport of solutes within the intervertebral disc. J. Biomech. 37:213–221, 2004.

    Article  PubMed  Google Scholar 

  21. Grimm, M. J., and J. L. Williams. Measurements of permeability in human calcaneal trabecular bone. J. Biomech. 30:743–745, 1997.

    Article  CAS  PubMed  Google Scholar 

  22. Gurkan, U. A., and O. Akkus. The mechanical environment of bone marrow: a review. Ann. Biomed Eng. 36:1978–1991, 2008.

    Article  PubMed  Google Scholar 

  23. Harrigan, T. P., M. Jasty, R. W. Mann, and W. H. Harris. Limitations of the continuum assumption in cancellous bone. J. Biomech. 21:269–275, 1988.

    Article  CAS  PubMed  Google Scholar 

  24. Hildebrand, T., A. Laib, R. Muller, J. Dequeker, and P. Ruegsegger. Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J. Bone Miner. Res. 14:1167–1174, 1999.

    Article  CAS  PubMed  Google Scholar 

  25. Keaveny, T. M., E. F. Morgan, G. L. Niebur, and O. C. Yeh. Biomechanics of trabecular bone. Annu. Rev. Biomed. Eng. 3:307–333, 2001.

    Article  CAS  PubMed  Google Scholar 

  26. Keaveny, T. M., and O. C. Yeh. Architecture and trabecular bone—toward an improved understanding of the biomechanical effects of age, sex and osteoporosis. J. Musculoskelet. Neuronal Interact. 2:205–208, 2002.

    CAS  PubMed  Google Scholar 

  27. Kilinc, S., U. A. Gurkan, S. Guven, G. Koyuncu, S. Tan, C. Karaca, O. Ozdogan, M. Dogan, C. Tugmen, E. E. Pala, U. Bayol, M. Baran, Y. Kurtulmus, I. Pirim, E. Kebapci, and U. Demirci. Evaluation of epithelial chimerism after bone marrow mesenchymal stromal cell infusion in intestinal transplant patients. Transplant. Proc. 46:2125–2132, 2014.

    Article  CAS  PubMed  Google Scholar 

  28. Kim, Y. J., and J. Henkin. Micro-computed tomography assessment of human alveolar bone: bone density and three-dimensional micro-architecture. Clin. Implant Dent. Relat. Res. 17:307–313, 2015.

    Article  PubMed  Google Scholar 

  29. Kohles, S. S., and J. B. Roberts. Linear poroelastic cancellous bone anisotropy: trabecular solid elastic and fluid transport properties. J. Biomech. Eng. 124:521–526, 2002.

    Article  PubMed  Google Scholar 

  30. Kohles, S. S., J. B. Roberts, M. L. Upton, C. G. Wilson, L. J. Bonassar, and A. L. Schlichting. Direct perfusion measurements of cancellous bone anisotropic permeability. J. Biomech. 34:1197–1202, 2001.

    Article  CAS  PubMed  Google Scholar 

  31. Krishnamoorthy, D., D. M. Frechette, B. J. Adler, D. E. Green, M. E. Chan, and C. T. Rubin. Marrow adipogenesis and bone loss that parallels estrogen deficiency is slowed by low-intensity mechanical signals. Osteoporos. Int. 27:747–756, 2016.

    Article  CAS  PubMed  Google Scholar 

  32. Lorentzon, M., and S. R. Cummings. Osteoporosis: the evolution of a diagnosis. J. Intern. Med. 277:650–661, 2015.

    Article  CAS  PubMed  Google Scholar 

  33. Lynch, M. E., D. Brooks, S. Mohanan, M. J. Lee, P. Polamraju, K. Dent, L. J. Bonassar, M. C. van der Meulen, and C. Fischbach. In vivo tibial compression decreases osteolysis and tumor formation in a human metastatic breast cancer model. J. Bone Miner. Res. 28:2357–2367, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lynch, M. E., A. Chiou, M. J. Lee, S. C. Marcott, P. V. Polamraju, Y. Lee, and C. Fischbach. 3D mechanical loading modulates the osteogenic response of mesenchymal stem cells to tumor-derived soluble signals. Tissue Eng. A 22:1006–1015, 2016.

    Article  CAS  Google Scholar 

  35. Lynch, M. E., and C. Fischbach. Biomechanical forces in the skeleton and their relevance to bone metastasis: Biology and engineering considerations. Adv. Drug Deliv. Rev. 79:119–134, 2014.

    Article  PubMed  Google Scholar 

  36. Mantila Roosa, S. M., Y. Liu, and C. H. Turner. Gene expression patterns in bone following mechanical loading. J. Bone Miner. Res. 26:100–112, 2011.

    Article  PubMed  Google Scholar 

  37. Mantila Roosa, S. M., C. H. Turner, and Y. Liu. Regulatory mechanisms in bone following mechanical loading. Gene Regul. Syst. Biol. 6:43–53, 2012.

    Article  Google Scholar 

  38. McCloskey, E. V., A. Oden, N. C. Harvey, W. D. Leslie, D. Hans, H. Johansson, R. Barkmann, S. Boutroy, J. Brown, R. Chapurlat, P. J. Elders, Y. Fujita, C. C. Gluer, D. Goltzman, M. Iki, M. Karlsson, A. Kindmark, M. Kotowicz, N. Kurumatani, T. Kwok, O. Lamy, J. Leung, K. Lippuner, O. Ljunggren, M. Lorentzon, D. Mellstrom, T. Merlijn, L. Oei, C. Ohlsson, J. A. Pasco, F. Rivadeneira, B. Rosengren, E. Sornay-Rendu, P. Szulc, J. Tamaki, and J. A. Kanis. A meta-analysis of trabecular bone score in fracture risk prediction and its relationship to FRAX. J. Bone Miner. Res. 31:940–948, 2016.

    Article  PubMed  Google Scholar 

  39. Metzger, T. A., T. C. Kreipke, T. J. Vaughan, L. M. McNamara, and G. L. Niebur. The in situ mechanics of trabecular bone marrow: the potential for mechanobiological response. J. Biomech. Eng. 137:011006, 2015.

    Article  Google Scholar 

  40. Metzger, T. A., S. A. Schwaner, A. J. LaNeve, T. C. Kreipke, and G. L. Niebur. Pressure and shear stress in trabecular bone marrow during whole bone loading. J. Biomech. 48:3035–3043, 2015.

    Article  PubMed  Google Scholar 

  41. Metzger, T. A., J. M. Shudick, R. Seekell, Y. Zhu, and G. L. Niebur. Rheological behavior of fresh bone marrow and the effects of storage. J. Mech. Behav. Biomed. Mater. 40C:307–313, 2014.

    Article  Google Scholar 

  42. Morgan, E. F., and T. M. Keaveny. Dependence of yield strain of human trabecular bone on anatomic site. J. Biomech. 34:569–577, 2001.

    Article  CAS  PubMed  Google Scholar 

  43. Nauman, E. A., K. E. Fong, and T. M. Keaveny. Dependence of intertrabecular permeability on flow direction and anatomic site. Ann. Biomed. Eng. 27:517–524, 1999.

    Article  CAS  PubMed  Google Scholar 

  44. Parfitt, A. M. The cellular basis of bone turnover and bone loss: a rebuttal of the osteocytic resorption–bone flow theory. Clin. Orthop. Relat. Res. 127:236–247, 1977.

    Google Scholar 

  45. Parfitt, A. M. Quantum concept of bone remodeling and turnover: implications for the pathogenesis of osteoporosis. Calcif. Tissue Int. 28:1–5, 1979.

    Article  CAS  PubMed  Google Scholar 

  46. Rahmoun, J., F. Chaari, E. Markiewicz, and P. Drazetic. Micromechanical modeling of the anisotropy of elastic biological composites. Multiscale Model. Simul. 8:326–336, 2009.

    Article  Google Scholar 

  47. Sander, E. A., and E. A. Nauman. Permeability of musculoskeletal tissues and scaffolding materials: experimental results and theoretical predictions. Crit. Rev. Biomed. Eng. 31:1–26, 2003.

    Article  PubMed  Google Scholar 

  48. Sander, E. A., D. A. Shimko, K. C. Dee, and E. A. Nauman. Examination of continuum and micro-structural properties of human vertebral cancellous bone using combined cellular solid models. Biomech. Model. Mechanobiol. 2:97–107, 2003.

    Article  CAS  PubMed  Google Scholar 

  49. Sandino, C., P. Kroliczek, D. D. McErlain, and S. K. Boyd. Predicting the permeability of trabecular bone by micro-computed tomography and finite element modeling. J. Biomech. 47:3129–3134, 2014.

    Article  PubMed  Google Scholar 

  50. Soves, C. P., J. D. Miller, D. L. Begun, R. S. Taichman, K. D. Hankenson, and S. A. Goldstein. Megakaryocytes are mechanically responsive and influence osteoblast proliferation and differentiation. Bone 66C:111–120, 2014.

    Article  Google Scholar 

  51. Syahrom, A., M. R. Abdul Kadir, J. Abdullah, and A. Ochsner. Permeability studies of artificial and natural cancellous bone structures. Med. Eng. Phys. 35:792–799, 2013.

    Article  PubMed  Google Scholar 

  52. Vaughan, T. J., M. Voisin, G. L. Niebur, and L. M. McNamara. Multiscale modeling of trabecular bone marrow: understanding the micromechanical environment of mesenchymal stem cells during osteoporosis. J. Biomech. Eng. 137:011003, 2015.

    Article  Google Scholar 

  53. Wang, X., X. Liu, and G. L. Niebur. Preparation of on-axis cylindrical trabecular bone specimens using micro-CT imaging. J. Biomech. Eng. 126:122–125, 2004.

    Article  PubMed  Google Scholar 

  54. Whyne, C. M., S. S. Hu, K. L. Workman, and J. C. Lotz. Biphasic material properties of lytic bone metastases. Ann. Biomed. Eng. 28:1154–1158, 2000.

    Article  CAS  PubMed  Google Scholar 

  55. Widmer, R. P., and S. J. Ferguson. On the interrelationship of permeability and structural parameters of vertebral trabecular bone: a parametric computational study. Comput. Methods Biomech. Biomed. Eng. 16:908–922, 2013.

    Article  Google Scholar 

  56. Wu, Z., A. J. Laneve, and G. L. Niebur. In vivo microdamage is an indicator of susceptibility to initiation and propagation of microdamage in human femoral trabecular bone. Bone 55:208–215, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zeiser, T., M. Bashoor-Zadeh, A. Darabi, and G. Baroud. Pore-scale analysis of Newtonian flow in the explicit geometry of vertebral trabecular bones using lattice Boltzmann simulation. Proc. Inst. Mech. Eng. H 222:185–194, 2008.

    Article  CAS  PubMed  Google Scholar 

  58. Zysset, P. K. A review of morphology-elasticity relationships in human trabecular bone: theories and experiments. J. Biomech. 36:1469–1485, 2003.

    Article  PubMed  Google Scholar 

  59. Zysset, P. K., and A. Curnier. An Alternative model for anisotropic elasticity based on fabric tensors. Mech. Mater. 21:243–250, 1995.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the U.S. National Science Foundation Award CMMI 1435467. We wish to thank an anonymous reviewer for encouraging us to explore the Kozeny–Carman relationship further.

Conflicts of Interest

The authors have no conflicts of interest with the material presented in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. L. Niebur.

Additional information

Associate Editor Umberto Morbiducci oversaw the review of this article.

An erratum to this article is available at http://dx.doi.org/10.1007/s10439-017-1835-3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kreipke, T.C., Niebur, G.L. Anisotropic Permeability of Trabecular Bone and its Relationship to Fabric and Architecture: A Computational Study. Ann Biomed Eng 45, 1543–1554 (2017). https://doi.org/10.1007/s10439-017-1805-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1805-9

Keywords

Navigation