Skip to main content

Advertisement

Log in

Effect of Chemistry on Osteogenesis and Angiogenesis Towards Bone Tissue Engineering Using 3D Printed Scaffolds

  • Additive Manufacturing of Biomaterials, Tissues, and Organs
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The functionality or survival of tissue engineering constructs depends on the adequate vascularization through oxygen transport and metabolic waste removal at the core. This study reports the presence of magnesium and silicon in direct three dimensional printed (3DP) tricalcium phosphate (TCP) scaffolds promotes in vivo osteogenesis and angiogenesis when tested in rat distal femoral defect model. Scaffolds with three different interconnected macro pore sizes were fabricated using direct three dimensional printing. In vitro ion release in phosphate buffer for 30 days showed sustained Mg2+ and Si4+ release from these scaffolds. Histolomorphology and histomorphometric analysis from the histology tissue sections revealed a significantly higher bone formation, between 14 and 20% for 4–16 weeks, and blood vessel formation, between 3 and 6% for 4–12 weeks, due to the presence of magnesium and silicon in TCP scaffolds compared to bare TCP scaffolds. The presence of magnesium in these 3DP TCP scaffolds also caused delayed TRAP activity. These results show that magnesium and silicon incorporated 3DP TCP scaffolds with multiscale porosity have huge potential for bone tissue repair and regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bandyopadhyay, A., S. Bernard, W. Xue, and S. Bose. Calcium phosphate-based resorbable ceramics: influence of MgO, ZnO, and SiO2 dopants. J. Am. Ceram. Soc. 89:2675–2688, 2006.

    Article  CAS  Google Scholar 

  2. Banerjee, S. S., S. Tarafder, N. M. Davies, A. Bandyopadhyay, and S. Bose. Understanding the influence of MgO and SrO binary doping on the mechanical and biological properties of b-TCP ceramics. Acta Biomater. 6:4167–4174, 2010.

    Article  CAS  PubMed  Google Scholar 

  3. Bose, S., G. Fielding, S. Tarafder, and A. Bandyopadhyay. Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics. Trends Biotechnol. 31:594–605, 2013.

    Article  CAS  PubMed  Google Scholar 

  4. Bose, S., M. Roy, and A. Bandyopadhyay. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 30(10):546–554, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bose, S., S. Sugiura, and A. Bandyopadhyay. Processing of controlled porosity ceramic structures via fused deposition. Scripta Mater. 41(9):1009–1014, 1999.

    Article  CAS  Google Scholar 

  6. Bose, S., and S. Tarafder. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater. 8:1401–1421, 2012.

    Article  CAS  PubMed  Google Scholar 

  7. Bose, S., S. Tarafder, S. S. Banerjee, N. M. Davies, and A. Bandyopadhyay. Understanding in vivo response and mechanical property variation in MgO, SrO and SiO2 doped β-TCP. Bone 48:1282–1290, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Canullo, L., F. Heinemann, T. Gedrange, R. Biffar, and C. Kunert-Keil. Histological evaluation at different times after augmentation of extraction sites grafted with a magnesium-enriched hydroxyapatite: double-blinded randomized controlled trial. Clin. Oral Implan. Res. 24:398–406, 2013.

    Article  Google Scholar 

  9. Carlisle, E. M. Silicon: a requirement in bone formation independent of vitamin D1. Calcif. Tissue Int. 33:27–34, 1981.

    Article  CAS  PubMed  Google Scholar 

  10. Derby, B. Printing and prototyping of tissues and scaffolds. Science 338:921–926, 2012.

    Article  CAS  PubMed  Google Scholar 

  11. Dhal, J., G. Fielding, S. Bose, and A. Bandyopadhyay. Understanding bioactivity and polarizability of hydroxyapatite doped with tungsten. J. Biomed. Mater. Res. Part B 100B:1836–1845, 2012.

    Article  CAS  Google Scholar 

  12. Fielding, G. A., A. Bandyopadhyay, and S. Bose. Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds. Dent. Mater. 28:113–122, 2012.

    Article  CAS  PubMed  Google Scholar 

  13. Fielding, G., and S. Bose. SiO2 and ZnO dopants in three-dimensionally printed tricalcium phosphate bone tissue engineering scaffolds enhance osteogenesis and angiogenesis in vivo. Acta Biomater. 9:9137–9148, 2013.

    Article  CAS  PubMed  Google Scholar 

  14. Gavrilov, K. L., S. J. Bennison, K. R. Mikeska, and R. Levi-Setti. Grain boundary chemistry of alumina by high-resolution imaging SIMS. Acta Mater. 47:4031–4039, 1999.

    Article  CAS  Google Scholar 

  15. de Groot, K. Bioceramics of Calcium Phosphate. Boca Raton: CRC Press, p. 160, 1983.

    Google Scholar 

  16. Habibovic, P., H. Yuan, C. M. van der Valk, G. Meijer, C. A. van Blitterswijk, and K. de Groot. 3D microenvironment as essential element for osteoinduction by biomaterials. Biomaterials 26:3565–3575, 2005.

    Article  CAS  PubMed  Google Scholar 

  17. Hing, K. A., B. Annaz, S. Saeed, P. A. Revell, and T. Buckland. Microporosity enhances bioactivity of synthetic bone graft substitutes. J. Mater. Sci. 16:467–475, 2005.

    CAS  Google Scholar 

  18. Hulbert, S. F., F. A. Young, R. S. Mathews, J. J. Klawitter, C. D. Talbert, and F. H. Stelling. Potential of ceramic materials as permanently implantable skeletal prostheses. J. Biomed. Mater. Res. 4:433–456, 1970.

    Article  CAS  PubMed  Google Scholar 

  19. Jiang, X., Z. Kalajzic, P. Maye, A. Braut, J. Bellizzi, M. Mina, and D. W. Rowe. Histological analysis of GFP expression in murine bone. J. Histochem. Cytochem. 53:593–602, 2005.

    Article  CAS  PubMed  Google Scholar 

  20. Jones, A. C., C. H. Arns, D. W. Hutmacher, B. K. Milthorpe, A. P. Sheppard, and M. A. Knackstedt. The correlation of pore morphology, interconnectivity and physical properties of 3D ceramic scaffolds with bone ingrowth. Biomaterials 30:1440–1451, 2009.

    Article  CAS  PubMed  Google Scholar 

  21. Jones, J. R., O. Tsigkou, E. E. Coates, M. M. Stevens, J. M. Polak, and L. L. Hench. Extracellular matrix formation and mineralization on a phosphate-free porous bioactive glass scaffold using primary human osteoblast (HOB) cells. Biomaterials 28:1653–1663, 2007.

    Article  CAS  PubMed  Google Scholar 

  22. Jugdaohsingh, R. Silicon and bone health. J. Nutr. Health Aging 11:99, 2007.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Jugdaohsingh, R., M. R. Calomme, K. Robinson, F. Nielsen, S. H. C. Anderson, P. D’Haese, P. Geusens, N. Loveridge, R. P. H. Thompson, and J. J. Powell. Increased longitudinal growth in rats on a silicon-depleted diet. Bone 43:596–606, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jugdaohsingh, R., K. L. Tucker, N. Qiao, L. A. Cupples, D. P. Kiel, and J. J. Powell. Dietary silicon intake is positively associated with bone mineral density in men and premenopausal women of the framingham offspring cohort. J. Bone Miner. Res. 19:297–307, 2004.

    Article  CAS  PubMed  Google Scholar 

  25. Karageorgiou, V., and D. Kaplan. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491, 2005.

    Article  CAS  PubMed  Google Scholar 

  26. Lakhkar, N. J., I.-H. Lee, H.-W. Kim, V. Salih, I. B. Wall, and J. C. Knowles. Bone formation controlled by biologically relevant inorganic ions: Role and controlled delivery from phosphate-based glasses. Adv. Drug Deliv. Rev. 65:405–420, 2013.

    Article  CAS  PubMed  Google Scholar 

  27. Landi, E., G. Logroscino, L. Proietti, A. Tampieri, M. Sandri, and S. Sprio. Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behaviour. J. Mater. Sci. 19:239–247, 2008.

    CAS  Google Scholar 

  28. LeGeros, R. Z. Calcium phosphate-based osteoinductive materials. Chem. Rev. 108:4742–4753, 2008.

    Article  PubMed  Google Scholar 

  29. LanLevengood, S. K., S. J. Polak, M. B. Wheeler, A. J. Maki, S. G. Clark, R. D. Jamison, and A. J. WagonerJohnson. Multiscale osteointegration as a new paradigm for the design of calcium phosphate scaffolds for bone regeneration. Biomaterials 31:3552–3563, 2010.

    Article  CAS  Google Scholar 

  30. Li, H., and J. Chang. Bioactive silicate materials stimulate angiogenesis in fibroblast and endothelial cell co-culture system through paracrine effect. Acta Biomater. 9:6981–6991, 2013.

    Article  CAS  PubMed  Google Scholar 

  31. Maier, J. A., D. Bernardini, Y. Rayssiguier, and A. Mazur. High concentrations of magnesium modulate vascular endothelial cell behaviour in vitro. BBA-Mol. Basis Dis. 1689:6–12, 2004.

    Article  CAS  Google Scholar 

  32. Mouriño, V., J. P. Cattalini, and A. R. Boccaccini. Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments. J. R. Soc. Interface 9:401–419, 2012.

    Article  PubMed  Google Scholar 

  33. Murphy, C. M., M. G. Haugh, and F. J. O’Brien. The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 31:461–466, 2010.

    Article  CAS  PubMed  Google Scholar 

  34. Murphy, W. L., C. A. Simmons, D. Kaigler, and D. J. Mooney. Bone regeneration via a mineral substrate and induced angiogenesis. J. Dent. Res. 83:204–210, 2004.

    Article  CAS  PubMed  Google Scholar 

  35. Perera, F. H., F. J. Martínez-Vázquez, P. Miranda, A. L. Ortiz, and A. Pajares. Clarifying the effect of sintering conditions on the microstructure and mechanical properties of [beta]-tricalcium phosphate. Ceram. Int. 36:1929–1935, 2010.

    Article  CAS  Google Scholar 

  36. Pietak, A. M., J. W. Reid, M. J. Stott, and M. Sayer. Silicon substitution in the calcium phosphate bioceramics. Biomaterials 28:4023–4032, 2007.

    Article  CAS  PubMed  Google Scholar 

  37. Qi, Q. Q., J. D. Chen, S. Z. Gao, J. Bu, and Z. P. Qiu. Preparation cell scaffolds with well defined pore structure through elastic porogen/pressure filtration. Adv. Mater. Res. 236–238:1897–1901, 2011.

    Article  Google Scholar 

  38. Ramay, H. R. R., and M. Zhang. Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering. Biomaterials 25:5171–5180, 2004.

    Article  CAS  PubMed  Google Scholar 

  39. Reffitt, D., N. Ogston, R. Jugdaohsingh, H. F. Cheung, B. A. Evans, R. P. Thompson, J. Powell, and G. Hampson. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone 32:127–135, 2003.

    Article  CAS  PubMed  Google Scholar 

  40. Rey, C. Calcium phosphate biomaterials and bone mineral. Differences in composition, structures and properties. Biomaterials 11:13–15, 1990.

    Article  CAS  PubMed  Google Scholar 

  41. Rouwkema, J., N. C. Rivron, and C. A. van Blitterswijk. Vascularization in tissue engineering. Trends Biotechnol. 26:434–441, 2008.

    Article  CAS  PubMed  Google Scholar 

  42. Roy, M., and S. Bose. Osteoclastogenesis and osteoclastic resorption of tricalcium phosphate: Effect of strontium and magnesium doping. J. Biomed. Mater. Res. Part A 100A:2450–2461, 2012.

    CAS  Google Scholar 

  43. Rude, R. K., H. E. Gruber, H. J. Norton, L. Y. Wei, A. Frausto, and J. Kilburn. Dietary magnesium reduction to 25% of nutrient requirement disrupts bone and mineral metabolism in the rat. Bone 37:211–219, 2005.

    Article  CAS  PubMed  Google Scholar 

  44. Seeley, Z., A. Bandyopadhyay, and S. Bose. Influence of TiO2 and Ag2O addition on tricalcium phosphate ceramics. J. Biomed. Mater. Res. Part A 82:113–121, 2007.

    Article  Google Scholar 

  45. Seeley, Z., A. Bandyopadhyay, and S. Bose. Tricalcium phosphate based resorbable ceramics: Influence of NaF and CaO addition. Mater. Sci. Eng.: C 28:11–17, 2008.

    Article  CAS  Google Scholar 

  46. Seyednejad, H., D. Gawlitta, R. V. Kuiper, A. de Bruin, C. F. van Nostrum, T. Vermonden, W. J. A. Dhert, and W. E. Hennink. In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(ε-caprolactone). Biomaterials 33:4309–4318, 2012.

    Article  CAS  PubMed  Google Scholar 

  47. Sicchieri, L. G., G. E. Crippa, P. T. de Oliveira, M. M. Beloti, and A. L. Rosa. Pore size regulates cell and tissue interactions with PLGA-CaP scaffolds used for bone engineering. J. Tissue Eng. Regen. Med. 6:155–162, 2012.

    Article  CAS  PubMed  Google Scholar 

  48. Staiger, M. P., A. M. Pietak, J. Huadmai, and G. Dias. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27:1728–1734, 2006.

    Article  CAS  PubMed  Google Scholar 

  49. Tarafder, S., V. K. Balla, N. M. Davies, A. Bandyopadhyay, and S. Bose. Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering. J. Tissue Eng. Regen. Med. 7:631–641, 2013.

    Article  CAS  PubMed  Google Scholar 

  50. Tarafder, S., N. M. Davies, A. Bandyopadhyay, and S. Bose. 3D printed tricalcium phosphate bone tissue engineering scaffolds: effect of SrO and MgO doping on in vivo osteogenesis in a rat distal femoral defect model. Biomater. Sci. 1:1250–1259, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tarafder, S., W. S. Dernell, A. Bandyopadhyay, and S. Bose. SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model. J. Biomed. Mater. Res. Part B 103:679–690, 2015.

    Article  Google Scholar 

  52. Webster, T. J., C. Ergun, R. H. Doremus, R. W. Siegel, and R. Bizios. Enhanced osteoclast-like cell functions on nanophase ceramics. Biomaterials 22:1327–1333, 2001.

    Article  CAS  PubMed  Google Scholar 

  53. Wu, F., J. Su, J. Wei, H. Guo, and C. Liu. Injectable bioactive calcium–magnesium phosphate cement for bone regeneration. Biomed. Mater. 3:044105, 2008.

    Article  PubMed  Google Scholar 

  54. Xue, W., K. Dahlquist, A. Banerjee, A. Bandyopadhyay, and S. Bose. Synthesis and characterization of tricalcium phosphate with Zn and Mg based dopants. J. Mater. Sci. Mater. Med. 19:2669–2677, 2008.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Valerie Lynch-Holm and Christine Davitt from Franceschi Microscopy and Imaging Center at Washington State University for their technical assistance with histology and immunohistochemistry. The authors also thank Prof. Neal M. Davies for allowing the authors to use his lab for in vivo study.

Funding

National Institutes of Health, NIBIB (Grant # NIH-R01-EB-007351 & NIH R01-AR-066361).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susmita Bose.

Additional information

Associate Editor Jos Malda oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1744 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bose, S., Tarafder, S. & Bandyopadhyay, A. Effect of Chemistry on Osteogenesis and Angiogenesis Towards Bone Tissue Engineering Using 3D Printed Scaffolds. Ann Biomed Eng 45, 261–272 (2017). https://doi.org/10.1007/s10439-016-1646-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1646-y

Keywords

Navigation