Skip to main content
Log in

Flow-Induced Damage to Blood Cells in Aortic Valve Stenosis

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Valvular hemolysis and thrombosis are common complications associated with stenotic heart valves. This study aims to determine the extent to which hemodynamics induce such traumatic events. The viscous shear stress downstream of a severely calcified bioprosthetic valve was evaluated via in vitro 2D particle image velocimetry measurements. The blood cell membrane response to the measured stresses was then quantified using 3D immersed-boundary computational simulations. The shear stress level at the boundary layer of the jet flow formed downstream of the valve orifice was observed to reach a maximum of 1000–1700 dyn/cm2, which was beyond the threshold values reported for platelet activation (100–1000 dyn/cm2) and within the range of thresholds reported for red blood cell (RBC) damage (1000–2000 dyn/cm2). Computational simulations demonstrated that the resultant tensions at the RBC membrane surface were unlikely to cause instant rupture, but likely to lead to membrane plastic failure. The resultant tensions at the platelet surface were also calculated and the potential damage was discussed. It was concluded that although shear-induced thrombotic trauma is very likely in stenotic heart valves, instant hemolysis is unlikely and the shear-induced damage to RBCs is mostly subhemolytic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Anderson, G. H., J. D. Hellums, J. L. Moake, and C. P. Alfrey, Jr. Platelet lysis and aggregation in shear fields. Blood Cells 4:499–511, 1978.

    CAS  PubMed  Google Scholar 

  2. Azadani, A. N., N. Jaussaud, P. B. Matthews, L. Ge, T. A. M. Chuter, and E. E. Tseng. Transcatheter aortic valves inadequately relieve stenosis in small degenerated bioprostheses. Interact. CardioVasc. Thorac. Surg. 11:70–77, 2010.

    Article  PubMed  Google Scholar 

  3. Bacher, R. P., and M. C. Williams. Hemolysis in capillary flow. J. Lab. Clin. Med. 76:485, 1970.

    CAS  PubMed  Google Scholar 

  4. Becker, R. C., P. Eisenberg, and A. G. G. Turpie. Pathobiologic features and prevention of thrombotic complications associated with prosthetic heart valves: fundamental principles and the contribution of platelets and thrombin. Am. Heart J. 141:1025–1037, 2001.

    Article  CAS  PubMed  Google Scholar 

  5. Browne, P., A. Ramuzat, R. Saxena, and A. P. Yoganathan. Experimental investigation of the steady flow downstream of the St. Jude bileaflet heart valve: a comparison between laser Doppler velocimetry and particle image velocimetry techniques. Ann. Biomed. Eng. 28:39–47, 2000.

    Article  CAS  PubMed  Google Scholar 

  6. Cordasco, D., and P. Bagchi. Intermittency and synchronized motion of red blood cell dynamics in shear flow. J. Fluid Mech. 759:472–488, 2014.

    Article  Google Scholar 

  7. Dimitrow, P. P., M. Hlawaty, A. Undas, M. Sniezek-Maciejewska, B. Sobien, E. Stepien, and W. Tracz. Effect of aortic valve stenosis on haemostasis is independent from vascular atherosclerotic burden. Atherosclerosis 204:103–108, 2009.

    Article  Google Scholar 

  8. Doddi, S. K., and P. Bagchi. Three-dimensional computational modeling of multiple deformable cells flowing in microvessels. Phys. Rev. E 79:046318, 2009.

    Article  Google Scholar 

  9. Dupin, M. M., I. Halliday, C. M. Care, L. Alboul, and L. L. Munn. Modeling the flow of dense suspensions of deformable particles in three dimensions. Phys. Rev. E 75:066707, 2007.

    Article  Google Scholar 

  10. Evans, E. A. Bending elastic-modulus of red-blood-cell membrane derived from buckling instability in micropipet aspiration tests. Biophys. J. 43:27–30, 1983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Evans, E. A., and R. M. Hochmuth. Membrane viscoplastic flow. Biophys. J. 16:13–26, 1976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Evans, E. A., R. Waugh, and L. Melnik. Elastic area compressibility modulus of red-cell membrane. Biophys. J. 16:585–595, 1976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ezzeldin, H. M., M. D. de Tullio, M. Vanella, S. D. Solares, and E. Balaras. A strain-based model for mechanical hemolysis based on a coarse-grained red blood cell model. Ann. Biomed. Eng. 43:1398–1409, 2015.

    Article  PubMed  Google Scholar 

  14. Fedosov, D. A., H. Lei, B. Caswell, S. Suresh, and G. E. Karniadakis. Multiscale modeling of red blood cell mechanics and blood flow in malaria. PLoS Comput. Biol. 7:e1002270, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fischer, T. M., M. Stohrliesen, and H. Schmidschonbein. Red-cell as a fluid droplet—tank tread-like motion of human erythrocyte-membrane in shear-flow. Science 202:894–896, 1978.

    Article  CAS  PubMed  Google Scholar 

  16. Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer, 1993.

    Book  Google Scholar 

  17. Ge, L., L. P. Dasi, F. Sotiropoulos, and A. P. Yoganathan. Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses. Ann. Biomed. Eng. 36:276–297, 2008.

    Article  PubMed  Google Scholar 

  18. Gitz, E., C. D. Koopman, A. Giannas, C. A. Koekman, D. J. van den Heuvel, H. Deckmyn, J. W. Akkerman, H. C. Gerritsen, and R. T. Urbanus. Platelet interaction with von Willebrand factor is enhanced by shear-induced clustering of glycoprotein Ibalpha. Haematologica 98:1810–1818, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Helfrich, W. Elastic properties of lipid bilayers—theory and possible experiments. Zeitschrift Fur Naturforschung C-J. Biosci. C 28:693–703, 1973.

    CAS  Google Scholar 

  20. Hellums, J. D. 1993 Whitaker lecture—biorheology in thrombosis research. Ann. Biomed. Eng. 22:445–455, 1994.

    Article  CAS  PubMed  Google Scholar 

  21. Hung, T. C., R. M. Hochmuth, J. H. Joist, and S. P. Sutera. Shear-induced aggregation and lysis of platelets. Trans. Am. Soc. Artif. Intern. Organs 22:285–291, 1976.

    CAS  PubMed  Google Scholar 

  22. Jones, S. A. A relationship between reynolds stresses and viscous dissipation—implications to red-cell damage. Ann. Biomed. Eng. 23:21–28, 1995.

    Article  CAS  PubMed  Google Scholar 

  23. Kawase, I., T. Matsuo, K. Sasayama, H. Suzuki, and H. Nishikawa. Hemolytic anemia with aortic stenosis resolved by urgent aortic valve replacement. Ann. Thorac. Surg. 86:645–646, 2008.

    Article  PubMed  Google Scholar 

  24. Kheradvar, A., E. M. Groves, A. Falahatpisheh, M. K. Mofrad, S. H. Alavi, R. Tranquillo, L. P. Dasi, C. A. Simmons, K. J. Grande-Allen, C. J. Goergen, F. Baaijens, S. H. Little, S. Canic, and B. Griffith. Emerging trends in heart valve engineering: Part IV. Computational modeling and experimental studies. Ann. Biomed. Eng. 43:2314–2333, 2015.

    Article  PubMed  Google Scholar 

  25. Leung SL L. Y., Bluestein D, Slepian MJ. Dielectrophoresis-mediated electrodeformation as a means of determining individual platelet stiffness. Ann. Biomed. Eng. 2015.

  26. Leverett, L. B., E. C. Lynch, C. P. Alfrey, and J. D. Hellums. Red blood-cell damage by shear-stress. Biophys. J. 12:257, 1972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lim, W. L., Y. T. Chew, T. C. Chew, and H. T. Low. Pulsatile flow studies of a porcine bioprosthetic aortic valve in vitro: PIV measurements and shear-induced blood damage. J. Biomech. 34:1417–1427, 2001.

    Article  CAS  PubMed  Google Scholar 

  28. Maxwell, M. J., S. M. Dopheide, S. J. Turner, and S. P. Jackson. Shear induces a unique series of morphological changes in translocating platelets—effects of morphology on translocation dynamics. Arterioscler. Thromb. Vasc. Biol. 26:663–669, 2006.

    Article  CAS  PubMed  Google Scholar 

  29. McGrath, B., G. Mealing, and M. R. Labrosse. A mechanobiological investigation of platelets. Biomech. Model. Mechanobiol. 10:473–484, 2011.

    Article  PubMed  Google Scholar 

  30. Nanjappa, B. N., H. K. Chang, and C. A. Glomski. Trauma of the erythrocyte membrane associated with low shear stress. Biophys. J. 13:1212–1222, 1973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ohta, Y., H. Okamoto, M. Kanno, and T. Okuda. Atomic force microscopic observation of mechanically traumatized erythrocytes. Artif. Organs 26:10–17, 2002.

    Article  PubMed  Google Scholar 

  32. Omori, T., T. Ishikawa, Y. Imai, and T. Yamaguchi. Membrane tension of red blood cells pairwisely interacting in simple shear flow. J. Biomech. 46:548–553, 2013.

    Article  PubMed  Google Scholar 

  33. Peskin, C. S., and D. M. Mcqueen. Modeling prosthetic heart-valves for numerical-analysis of blood-flow in the heart. J. Comput. Phys. 37:113–132, 1980.

    Article  Google Scholar 

  34. Pothapragada S., P. Zhang, J. Sheriff, M. Livelli, M. J. Slepian, Y. F. Deng and D. Bluestein. A phenomenological particle-based platelet model for simulating filopodia formation during early activation. International J. Numer. Methods Biomed. Eng. 31: 2015.

  35. Pozrikidis, C. Flipping of an adherent blood platelet over a substrate. J. Fluid Mech. 568:161–172, 2006.

    Article  Google Scholar 

  36. Ramstack, J. M., L. Zuckerman, and L. F. Mockros. Shear-induced activation of platelets. J. Biomech. 12:113–125, 1979.

    Article  CAS  PubMed  Google Scholar 

  37. Rooney, J. A. Hemolysis near an ultrasonically pulsating gas bubble. Science 169:869–871, 1970.

    Article  CAS  PubMed  Google Scholar 

  38. Saikrishnan, N., C. H. Yap, N. C. Milligan, N. V. Vasilyev, and A. P. Yoganathan. In vitro characterization of bicuspid aortic valve hemodynamics using particle image velocimetry. Ann. Biomed. Eng. 40:1760–1775, 2012.

    Article  PubMed  Google Scholar 

  39. Sandza, J. G., R. E. Clark, C. S. Weldon, and S. P. Sutera. Subhemolytic trauma of erythrocytes: recognition and sequestration by the spleen as a function of shear. Trans. Am. Soc. Artif. Intern. Organs 20:457–462, 1974.

    PubMed  Google Scholar 

  40. Seaman, C., A. G. Akingba, and P. Sucosky. Steady flow hemodynamic and energy loss measurements in normal and simulated calcified tricuspid and bicuspid aortic valves. J. Biomech. Eng.-Trans. ASME 136:041001, 2014.

    Article  Google Scholar 

  41. Sheriff, J., D. Bluestein, G. Girdhar, and J. Jesty. High-shear stress sensitizes platelets to subsequent low-shear conditions. Ann. Biomed. Eng. 38:1442–1450, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Skalak, R., A. Tozeren, R. P. Zarda, and S. Chien. Strain energy function of red blood-cell membranes. Biophys. J. 13:245–280, 1973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Skotheim, J. M., and T. W. Secomb. Red blood cells and other nonspherical capsules in shear flow: oscillatory dynamics and the tank-treading-to-tumbling transition. Phys. Rev. Lett. 98:078301, 2007.

    Article  CAS  PubMed  Google Scholar 

  44. Sutera, S. P. Flow-induced trauma to blood-cells. Circ. Res. 41:2–8, 1977.

    Article  CAS  PubMed  Google Scholar 

  45. Sutera, S. P., P. A. Croce, and M. Mehrjard. Hemolysis and subhemolytic alterations of human RBC induced by turbulent shear-flow. Trans. Am. Soc. Artif. Intern. Organs 18:335–341, 1972.

    Article  CAS  PubMed  Google Scholar 

  46. Sutera, S. P., and M. H. Mehrjardi. Deformation and fragmentation of human red blood-cells in turbulent shear-flow. Biophys. J. 15:1–10, 1975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Transontay, R., S. P. Sutera, G. I. Zahalak, and P. R. Rao. Membrane stress and internal-pressure in a red-blood-cell freely suspended in a shear-flow. Biophys. J. 51:915–924, 1987.

    Article  CAS  Google Scholar 

  48. Tsuji, A., M. Tanabe, K. Onishi, T. Kitamura, T. Okinaka, M. Ito, N. Isaka, and T. Nakano. Intravascular hemolysis in aortic stenosis. Intern. Med. 43:935–938, 2004.

    Article  PubMed  Google Scholar 

  49. Vahidkhah, K., S. L. Diamond, and P. Bagchi. Hydrodynamic interaction between a platelet and an erythrocyte: effect of erythrocyte deformability, dynamics, and wall proximity. J. Biomech. Eng. 135:51002, 2013.

    Article  PubMed  Google Scholar 

  50. Vahidkhah, K., S. L. Diamond, and P. Bagchi. Platelet dynamics in three-dimensional simulation of whole blood. Biophys. J. 106:2529–2540, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Waugh, R. E. Temperature dependence of the yield shear resultant and the plastic viscosity coefficient of erythrocyte membrane. Implications about molecular events during membrane failure. Biophys. J. 39:273–278, 1982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. White, J. G., S. M. Burris, D. Tukey, C. Smith, and C. C. Clawson. Micropipette aspiration of human-platelets—influence of microtubules and actin-filaments on deformability. Blood 64:210–214, 1984.

    CAS  PubMed  Google Scholar 

  53. Williams, A. R. Release of serotonin from human platelets by acoustic microstreaming. J. Acoust. Soc. Am. 56:1640–1649, 1974.

    Article  CAS  PubMed  Google Scholar 

  54. Xu, Z. L., J. Lioi, J. Mu, M. M. Kamocka, X. M. Liu, D. Z. Chen, E. D. Rosen, and M. Alber. A multiscale model of venous thrombus formation with surface-mediated control of blood coagulation cascade. Biophys. J. 98:1723–1732, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yazdani, A. Z. K., and P. Bagchi. Phase diagram and breathing dynamics of a single red blood cell and a biconcave capsule in dilute shear flow. Phys. Rev. E 84:026314, 2011.

    Article  Google Scholar 

  56. Zhang, P., C. Gao, N. Zhang, M. J. Slepian, Y. F. Deng, and D. Bluestein. Multiscale particle-based modeling of flowing platelets in blood plasma using dissipative particle dynamics and coarse grained molecular dynamics. Cell. Mol. Bioeng. 7:552–574, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the American Heart Association and University of Denver Postdoctoral Fellowship Award. We thank Bruce Van Daman from Edwards Lifesciences for providing us with the degenerated PERIMOUNT bioprosthesis. Computational support from SOE HPC at Rutgers University, School of Engineering is acknowledged.

Conflict of interest

The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali N. Azadani.

Additional information

Associate Editor Ender A. Finol oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 4969 kb)

Supplementary material 2 (AVI 7664 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vahidkhah, K., Cordasco, D., Abbasi, M. et al. Flow-Induced Damage to Blood Cells in Aortic Valve Stenosis. Ann Biomed Eng 44, 2724–2736 (2016). https://doi.org/10.1007/s10439-016-1577-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1577-7

Keywords

Navigation