Skip to main content
Log in

Mastoid Vibration Affects Dynamic Postural Control During Gait

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Our objective was to investigate how manipulating sensory input through mastoid vibration (MV) could affect dynamic postural control during walking, with and without simultaneous manipulation of the visual and the somatosensory systems. We used three levels of MV (none, unilateral, and bilateral) via vibrating elements placed on the mastoid processes. We combined this with the six conditions of the Locomotor Sensory Organization Test (LSOT) paradigm to challenge the visual and somatosensory systems. We hypothesized that MV would affect both amount and temporal structure measures of sway variability during walking and that, in combination with manipulations of the visual and the somatosensory inputs, MV would augment the effects previously observed. The results confirmed that MV produced a significant increase in the amount of sway variability in both anterior–posterior and medial–lateral directions. Significant changes in the temporal structure of sway variability were only observed in the anterior–posterior direction. Bilateral MV produced larger effects than unilateral stimulation. We concluded that sensory input while walking could be affected using MV. Combining MV with manipulations of visual and somatosensory input could allow us to better understand the contributions of the sensory systems during locomotion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

MV:

Mastoid vibration

LSOT:

Locomotor Sensory Organization Test

netCOP:

NET Center of Pressure

SampEn:

Sample Entropy

References

  1. Agrawal, Y., J. P. Carey, C. C. Della Santina, M. C. Schubert, and L. B. Minor. Disorders of balance and vestibular function in US adults. Arch. Intern. Med. 169(10):938–944, 2009.

    Article  PubMed  Google Scholar 

  2. Biguer, B., I. M. Donaldson, A. Hein, and M. Jeannerod. Neck muscle vibration modifies the representation of visual motion and direction in man. Brain 111:1405–1424, 1988.

    Article  PubMed  Google Scholar 

  3. Bottini, G., H. O. Karnath, G. Vallar, R. Sterzi, C. D. Frith, R. S. Frackowiak, and E. Paulesu. Cerebral representation for egocentric space: functional-anatomical evidence from caloric vestibular stimulation and neck vibration. Brain 124:1182–1196, 2001.

    Article  CAS  PubMed  Google Scholar 

  4. Bove, M., G. Brichetto, G. Abbruzzese, R. Marchese, and M. Schieppati. Neck proprioception and spatial orientation in cervical dystonia. Brain 127:2764–2778, 2004.

    Article  PubMed  Google Scholar 

  5. Bove, M., G. Courtine, and M. Schieppati. Neck muscle vibration and spatial orientation during stepping in place in humans. J. Neurophysiol. 88(5):2232–2241, 2002.

    Article  PubMed  Google Scholar 

  6. Bove, M., M. Diverio, T. Pozzo, and M. Schieppati. Neck muscle vibration disrupts steering of locomotion. J. Appl. Physiol. (1985) 91(2):581–588, 2001.

    CAS  Google Scholar 

  7. Brandt, T. Cervical vertigo—reality or fiction? Audiol Neurootol 1:187–196, 1996.

    Article  CAS  PubMed  Google Scholar 

  8. Brandt, T., and A. M. Bronstein. Cervical vertigo. J. Neurol. Neurosurg. Psychiatry 71(2):8–12, 2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brandt, T., J. Dichgans, and W. Buchle. Motion habituation: inverted self-motion perception and optokinetic after-nystagmus. Exp. Brain Res. 21(4):337–352, 1974.

    Article  CAS  PubMed  Google Scholar 

  10. Brandt, T., M. Strupp, J. Benson, and M. Dieterich. Vestibulopathic gait. Walking and running. Adv. Neurol. 87:165–172, 2001.

    CAS  PubMed  Google Scholar 

  11. Chan, Y. S., J. Kasper, and V. J. Wilson. Dynamics and directional sensitivity of neck muscle spindle responses to head rotation. J. Neurophysiol. 57:1716–1729, 1987.

    CAS  PubMed  Google Scholar 

  12. Chien, J. H., D. J. Eikema, M. Mukherjee, and N. Stergiou. Locomotor sensory organization test: a novel paradigm for the assessment of sensory contributions in gait. Ann. Biomed. Eng. 42(12):2512–2523, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chien, J. H., M. Mukherjee, K. C. Siu, and N. Stergiou. Locomotor sensory organization test: how sensory conflict affects the temporal structure of sway variability during gait. Ann. Biomed. Eng. 2015. doi:10.1007/s10439-015-1440-2.

    PubMed  Google Scholar 

  14. Cohen, H. S. Vestibular disorders and impaired path integration along a linear trajectory. J. Vestib. Res. 10(1):7–15, 2000.

    CAS  PubMed  Google Scholar 

  15. Deshpande, N., L. Ferrucci, J. Metter, K. A. Faulkner, E. Strotmeyer, S. Satterfield, A. Schwartz, and E. Simonsick. Association of lower limb cutaneous sensitivity with gait speed in the elderly: the health ABC study. Am. J. Phys. Med. Rehabil. 87(11):921–928, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Deshpande, N., E. J. Metter, and L. Ferrucci. Validity of clinically derived cumulative somatosensory impairment index. Arch. Phys. Med. Rehabil. 91(2):226–232, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Deshpande, N., and A. E. Patla. Postural responses and spatial orientation to neck proprioceptive and vestibular inputs during locomotion in young and older adults. Exp. Brain Res. 167(3):468–474, 2005.

    Article  PubMed  Google Scholar 

  18. Dilda, V., H. G. MacDougall, and S. T. Moore. Tolerance to extended galvanic vestibular stimulation: optimal exposure for astronaut training. Aviat. Space Environ. Med. 82(8):770–774, 2011.

    Article  PubMed  Google Scholar 

  19. Ernst, M. O., and M. S. Banks. Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415(6870):429–433, 2002.

    Article  CAS  PubMed  Google Scholar 

  20. Fetsch, C. R., A. H. Turner, G. C. DeAngelis, and D. E. Angelaki. Dynamic reweighting of visual and vestibular cues during self-motion perception. J. Neurosci. 29(49):15601–15612, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fife, T. D., R. J. Tusa, J. M. Furman, D. S. Zee, E. Frohman, R. W. Baloh, T. Hain, J. Goebel, J. Demer, and L. Eviatar. Assessment: vestibular testing techniques in adults and children: report of the Therapeutic and Technology Assessment Subcommittee of American Academy Neurology. Neurology 55(10):1431–1441, 2000.

    Article  CAS  PubMed  Google Scholar 

  22. Fitzpatrick, R. C., J. E. Butler, and B. L. Day. Resolving head rotation for human bipedalism. Curr. Biol. 16(15):1509–1514, 2006.

    Article  CAS  PubMed  Google Scholar 

  23. Fitzpatrick, R. C., D. L. Wardman, and J. L. Taylor. Effects of galvanic vestibular stimulation during human walking. J. Physiol. 517:931–939, 1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fransson, P. A., M. Karlberg, T. Sterner, and M. Maqnusson. Direction of galvanically-induced vestibulo-postural responses during active and passive neck torsion. Acta Otolaryngol. 120(4):500–503, 2000.

    Article  CAS  PubMed  Google Scholar 

  25. Goldberg, J. M., C. E. Smith, and C. Fernandez. Relation between discharge regularity and response to externally applied galvanic currents in vestibular nerve afferents of the squirrel monkey. J. Neurophysiol. 51(6):1236–1256, 1984.

    CAS  PubMed  Google Scholar 

  26. Gordon, C. R., D. Tal, N. Gadoth, and A. Shupak. Prolonged optokinetic stimulation generates podokinetic after rotation. Ann. N. Y. Acad. Sci. 297–302:2003, 1004.

    Google Scholar 

  27. Ivanenko, Y. P., R. Grasso, and F. Lacquaniti. Neck muscle vibration makes walking humans accelerate in the direction gaze. J. Physiol. 525(pt 3):803–814, 2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jacobson, G. P., and C. W. Newman. The development of the Dizziness Handicap Inventory. Arch Otolanryngol Head Surg 116:424–427, 1990.

    Article  CAS  Google Scholar 

  29. Jahn, K., M. Strupp, E. Schneider, M. Dieterich, and T. Brandt. Differential effects of vestibular stimulation on walking and running. NeuroReport 11(8):1745–1748, 2000.

    Article  CAS  PubMed  Google Scholar 

  30. Jordan, K., J. H. Challis, and K. M. Newell. Walking speed influences on gait cycle variability. Gait Posture. 26(1):128–134, 2007.

    Article  PubMed  Google Scholar 

  31. Jordan, K., and K. M. Newell. The structure of variability in human walking and running is speed-dependent. Exerc. Sport Sci. Rev. 36(4):200–204, 2008.

    Article  PubMed  Google Scholar 

  32. Karlberg, M., S. Aw, R. Black, M. Todd, H. MacDougall, and M. Halamgyi. Vibration-induced ocular torsion and nystagmus after unilateral vestibular deafferentation. Brain 126:956–964, 2003.

    Article  PubMed  Google Scholar 

  33. Kavounoudias, A., J. C. Gilhodes, R. Roll, and J. P. Roll. From balance regulation to body orientation: two goals for muscle proprioceptive information processing? Exp. Brain Res. 124(1):80–88, 1999.

    Article  CAS  PubMed  Google Scholar 

  34. Kubo, T., H. Kumakura, Y. Hirokawa, K. Yamamoto, and E. Hirasaki. 3D analysis of human locomotion before and after caloric stimulation. Acta Otolaryngol. 117(2):143–148, 1997.

    Article  CAS  PubMed  Google Scholar 

  35. Lekhel, H., K. Popov, A. Bronstein, and M. Gresty. Postural reponses to vibration of neck muscles in patients with uni- and bilateral vestibular loss. Gait Posture 7:228–236, 1998.

    Article  PubMed  Google Scholar 

  36. Mawase, F., T. Haizler, S. Bar-Haim, and A. Karniel. Kinetic adaptation during locomotion on a split-belt treadmill. J. Neurophysiol. 109:2216–2227, 2013.

    Article  PubMed  Google Scholar 

  37. Neuhauser, H. K., A. Radtke, and M. von Brevern. Burden of dizziness and vertigo in the community. Arch. Intern. Med. 168(19):2118–2124, 2008.

    Article  PubMed  Google Scholar 

  38. Nuti, D., and M. Mandala. Sensitivity and specificity of mastoid vibration test in detection of effects of vestibular neuritis. Acta Otorhinolarynqol Ital. 25(5):271–276, 2005.

    CAS  Google Scholar 

  39. Pettorossi, V. E., and M. Schieppati. Neck proprioception shapes body orientation and perception of motion. Front Hum Neurosci. 8:895, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Proctor, L. R. Clinical experience with a short-acting caloric test. Laryngoscope 95(1):75–80, 1985.

    Article  CAS  PubMed  Google Scholar 

  41. Souman, J. L., I. Frissen, M. N. Sreenivasa, and M. O. Ernst. Walking straight into circles. Curr. Biol. 19(18):1538–1542, 2009.

    Article  CAS  PubMed  Google Scholar 

  42. St George, R. J., R. C. Fitzpatrick, and RJ. The sense of self-motion, orientation and balance explored by vestibular stimulation. J. Physiol. 589(pt 4):807–813, 2011.

    Article  CAS  PubMed  Google Scholar 

  43. Strupp, M., V. Arbusow, M. Dieterich, and T. Brandt. Perceptual and oculomotor effects of neck muscle vibration in vestibular neuritis: ipsilateral somatosensory substitution of vestibular function. Brain 121:677–685, 1998.

    Article  PubMed  Google Scholar 

  44. Wurdeman, S. R., N. B. Huben, and N. Stergiou. Variability of gait is dependent on direction of progression: implication of active control. J. Biomech. 45(4):653–659, 2012.

    Article  PubMed  Google Scholar 

  45. Wurdeman, S. R., and N. Stergiou. Temporal structure of variability reveals similar control mechanisms during lateral stepping and forward walking. Gait Posture 38(1):73–78, 2013.

    Article  PubMed  Google Scholar 

  46. Yentes, J. M., N. Hunt, K. K. Schmid, J. P. Kaipust, and D. McGrath. Stergiou N. The appropriate use of approximate entropy and sample entropy with short data sets. Ann. Biomed. Eng. 41(2):349–365, 2013.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Center for Research in Human Movement Variability of the University of Nebraska Omaha and the NIH (P20GM109090 and R01AG034995). Additional support was provided by NASA EPSCoR NNX11AM06A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Stergiou.

Additional information

Associate Editor Thurmon E. Lockhart oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chien, J.H., Mukherjee, M. & Stergiou, N. Mastoid Vibration Affects Dynamic Postural Control During Gait. Ann Biomed Eng 44, 2774–2784 (2016). https://doi.org/10.1007/s10439-016-1556-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1556-z

Keywords

Navigation