Skip to main content

Advertisement

Log in

Microneedle Electrode Array for Electrical Impedance Myography to Characterize Neurogenic Myopathy

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Electrical impedance myography (EIM) is a noninvasive technique for neuromuscular assessment, wherein a low-intensity alternating current is applied to a muscle, and the consequent surface voltage patterns are evaluated. Commercial wet electrodes are most commonly used for EIM. However, these electrodes are not suitable for use on small muscles, as they do not effectively solve the problem of high electrode-skin contact impedance (ESCI) that negatively influences the quality of recorded biopotentials. To address this problem, we fabricated a novel microneedle electrode array (MEA) that consists of 124-µm-long microneedles. Compared to wet electrodes, the MEA could pierce through the outer skin surface in a painless and micro-invasive manner, and could thus effectively reduce ESCI. The MEA has excellent test–retest reproducibility, with intraclass correlation coefficients exceeding 0.920. When used in combination with EIM, the MEA differentiated the affected muscles from the unaffected muscles in patients with neurogenic myopathy, by using EIM parameters of reactance and phase (p = 0.023 and 0.008, respectively). Thus, the novel MEA is a practical and reusable device for EIM assessment in cases of neurogenic myopathy. However, further refinement of the electrode is needed to enhance the clinical application of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

EIM:

Electrical impedance myography

ESCI:

Electrode-skin contact impedance

MEA:

Microneedle electrode array

EMG:

Electromyography

SC:

Stratum corneum

DRIE:

Deep reactive ion etching

SEM:

Scanning electron microscope

References

  1. Ahad, M., et al. Correlation between muscle electrical impedance data and standard neurophysiologic parameters after experimental neurogenic injury. Physiol. Meas. 31(11):1437–1448, 2010.

    Article  CAS  PubMed  Google Scholar 

  2. Ahad, M. A., et al. The effect of subacute denervation on the electrical anisotropy of skeletal muscle: Implications for clinical diagnostic testing. Clin. Neurophysiol. 121(6):882–886, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Baron, N., et al. Investigations of development process of high hollow beveled microneedles using a combination of ICP RIE and dicing saw. Microsyst Technol. 14(9):1475–1480, 2008.

    Article  CAS  Google Scholar 

  4. Chandrasekaran, S., et al. Characterization of surface micromachined metallic microneedles. J. Microelectromech. Syst. 12(3):289–295, 2003.

    Article  Google Scholar 

  5. Chin, A. B., et al. Optimizing measurement of the electrical anisotropy of muscle. Muscle Nerve. 37(5):560–565, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hans, G. J., et al. Age- and gender-associated differences in electrical impedance values of skeletal muscle. Physiol. Meas. 34(12):1611–1622, 2013.

    Article  Google Scholar 

  7. Havard, K., et al. Electrical Impedance of Stainless Steel Needle Electrodes. Ann. Biomed. Eng. 38(7):2371–2382, 2010.

    Article  Google Scholar 

  8. Hsu, L. S., et al. Developing barbed microtip-based electrode arrays for biopotential measurement. Sensors. 14(7):12370–12386, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Joon, G. H., et al. Conductive microtip electrode array with variable aspect ratio using combination process of reactive ion etching. J. Micromech. Microeng. 23(11):115009, 2013.

    Article  Google Scholar 

  10. Kochhar, J. S., et al. Direct microneedle array fabrication off a photomask to deliver collagen through skin. Pharm Res. 31(7):1724–1734, 2014.

    Article  CAS  PubMed  Google Scholar 

  11. Koehler, M. J., et al. In vivomeasurement of the human epidermal thickness in different localizations by multiphoton laser tomography. Skin Res. Technol. 16(3):259–264, 2010.

    PubMed  Google Scholar 

  12. Li, J., et al. Alteration in surface muscle electrical anisotropy in the rat SOD1 model of amyotrophic lateral sclerosis. Clin. Neurophysiol. 123(1):206–210, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mansoor, I., et al. Arrays of hollow out-of-plane microneedles made by metal electrodeposition onto solvent cast conductive polymer structures. J. Micromech. Microeng. 23(8):085011, 2013.

    Article  Google Scholar 

  14. Miller, P. R., et al. Integrated carbon fiber electrodes within hollow polymer microneedles for transdermal electrochemical sensing. Biomicrofluidics. 5(1):013415, 2011.

    Article  PubMed Central  Google Scholar 

  15. Pouria, F. A review of organic and inorganic biomaterials for neural interfaces. Adv Mater. 26(12):1846–1885, 2014.

    Article  Google Scholar 

  16. Ruffini, G., et al. A dry electrophysiology electrode using CNT arrays. Sensors Actuators A 132:34–41, 2006.

    Article  CAS  Google Scholar 

  17. Rutkove, S. B. Electrical impedance myography: background, current state, and future directions. Muscle Nerve. 40(6):936–946, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rutkove, S. B., et al. Electrical impedance myography to assess outcome in amyotrophic lateral sclerosis clinical trials. Clin. Neurophysiol. 118(11):2413–2418, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rutkove, S. B., et al. Characterizing spinal muscular atrophy with electrical impedance myography. Muscle Nerve. 42(6):915–921, 2010.

    Article  PubMed  Google Scholar 

  20. Rutkove, S. B., et al. Electrical impedance myography in spinal muscular atrophy: alongitudinal study. Muscle Nerve. 45(5):642–647, 2012.

    Article  PubMed  Google Scholar 

  21. Rutkove, S. B., et al. Electrical impedance myography as a biomarker to assess ALS progression. Amyotroph Lateral Scler. 13(5):439–445, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sang, J. M., et al. A novel fabrication method of a microneedle array using inclined deep x-ray exposure. J. Micromech. Microeng. 15(5):903, 2005.

    Article  Google Scholar 

  23. Schwartz, S., et al. Optimizing electrical impedance myography measurements by using a multifrequency ratio: a study in Duchenne muscular dystrophy. Clin. Neurophysiol. 126(1):202–208, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Spieker, A. J., et al. Electrical impedance myography in the diagnosis of radiculopathy. Muscle Nerve. 48(5):800–805, 2013.

    Article  PubMed  Google Scholar 

  25. Tarulli, A. W., et al. Electrical impedance myography in the bedside assessment of inflammatory myopathy. Neurology. 65(3):451–452, 2005.

    Article  CAS  PubMed  Google Scholar 

  26. Tarulli, A. W., et al. Electrical impedance myography in the assessment of disuse atrophy. Arch Phys Med Rehabil. 90(10):1806–1810, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wang, L. L., et al. Assessment of alterations in the electrical impedance of muscle after experimental nerve injury via finite element analysis. IEEE Trans. Biomed. Eng. 58(6):1585–1591, 2011.

    Article  PubMed  Google Scholar 

  28. Wang, L. L., et al. Electrical impedance myography for monitoring motor neuron loss in the SOD1 G93A amyotrophic lateral sclerosis rat. Clin. Neurophysiol. 122(12):2505–2511, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wilke, N., et al. Process optimization and characterization of silicon microneedles fabricated by wet etch technology. Microelectron. J. 36(7):650–656, 2005.

    Article  CAS  Google Scholar 

  30. Yan, X. X., et al. Tapered metal microneedles fabricated by the hybrid process of mechanical dicing and electrochemical corrosion for drug delivery. Micro Nano Lett. 7(12):1313–1315, 2012.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant No. 61376072; 61334008). The authors acknowledge the support of the Department of Neurology of the Peking Union Medical College Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yude Yu.

Additional information

Associate Editor Tingrui Pan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Li, Y., Liu, M. et al. Microneedle Electrode Array for Electrical Impedance Myography to Characterize Neurogenic Myopathy. Ann Biomed Eng 44, 1566–1575 (2016). https://doi.org/10.1007/s10439-015-1466-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1466-5

Keywords

Navigation