Skip to main content

Advertisement

Log in

A Phase-Based Electrical Plethysmography Approach to Bladder Volume Measurement

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Neuromodulation approaches to treating lower urinary tract dysfunction could be substantially improved by a sensor able to detect when the bladder is full. A number of approaches to this problem have been proposed, but none has been found entirely satisfactory. Electrical plethysmography approaches attempt to relate the electrical impedance of the bladder to its volume, but have previously focused only on the amplitudes of the measured signals. We investigated whether the phase relationships between sinusoidal currents applied through a pair of stimulating electrodes and measured through a pair of recording electrodes could provide information about bladder volume. Acute experiments in a rabbit model were used to investigate how phase-to-volume or amplitude-to-volume regression models could be used to predict bladder volumes in future recordings, with and without changes to the saline conductivity. Volume prediction errors were found to be 6.63 ± 1.12 mL using the phase information and 8.32 ± 3.88 mL using the amplitude information (p = 0.44 when comparing the phase and amplitude results, n = 6), where the volume of the filled bladder was about 25 mL. When a full/empty binary decision rule was applied based on the regression model, the difference between the actual threshold that would result from this rule and the desired threshold was found to be 4.24 ± 0.65 mL using the phase information and 106.92 ± 189.82 mL using the amplitude information (p = 0.03, n = 6). Our results suggest that phase information can form the basis for more effective and robust electrical plethysmography approaches to bladder volume measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Abbey, J., and L. Close. Electrical impedance measurement of urinary bladder fullness. J. Microw. Pow. 18(3):305–309, 1983.

    CAS  Google Scholar 

  2. Anderson, K. D. Targeting recovery: priorities of the spinal cord-injured population. J. Neurotrauma 21:1371–1383, 2004.

    Article  PubMed  Google Scholar 

  3. Bruns, T. M., R. A. Gaunt, and D. J. Weber. Multielectrode array recordings of bladder and perineal primary afferent activity from the sacral dorsal root ganglia. J. Neural Eng. 8:056010, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bruns, T. M., R. A. Gaunt, and D. J. Weber. Estimating bladder pressure from sacral dorsal root ganglia recordings. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011:4239–4242, 2011.

    PubMed  PubMed Central  Google Scholar 

  5. Coosemans, J., and R. Puers. An autonomous bladder pressure monitoring system. Sens. Actuators A Phys. 123:155–161, 2005.

    Article  Google Scholar 

  6. Elkelini, M. S., A. Abuzgaya, and M. M. Hassouna. Mechanisms of action of sacral neuromodulation. Int. Urogynecol. J. 21(Suppl 2):S439–S446, 2010.

    Article  PubMed  Google Scholar 

  7. Elkelini, M., and M. M. Hassouna. Canadian experience in sacral neuromodulation. Urol. Clin. North Am. 32:41–49, 2005.

    Article  PubMed  Google Scholar 

  8. Gill, B. C., P. C. Fletter, P. J. Zaszczurynski, A. Perlin, D. Yachia, and M. S. Damaser. Feasibility of fluid volume conductance to assess bladder volume. Neurourol. Urodyn. 27:525–531, 2008.

    Article  PubMed  Google Scholar 

  9. Jezernik, S., W. M. Grill, and T. Sinkjaer. Neural network classification of nerve activity recorded in a mixed nerve. Neurol. Res. 23:429–434, 2001.

    Article  CAS  PubMed  Google Scholar 

  10. Jezernik, S., W. M. Grill, and T. Sinkjaer. Detection and inhibition of hyperreflexia-like bladder contractions in the cat by sacral nerve root recording and electrical stimulation. Neurourol. Urodyn. 20:215–230, 2001.

    Article  CAS  PubMed  Google Scholar 

  11. Jezernik, S., J. G. Wen, N. J. Rijkhoff, J. C. Djurhuus, and T. Sinkjaer. Analysis of bladder related nerve cuff electrode recordings from preganglionic pelvic nerve and sacral roots in pigs. J. Urol. 163:1309–1314, 2000.

    Article  CAS  PubMed  Google Scholar 

  12. Keshtkar, A., A. Mesbahi, and P. Mehnati. The effect of bladder volume changes on the measured electrical impedance of the urothelium. Int. J. Bio. Eng. Tech. 1(3):287–292, 2008.

    Article  Google Scholar 

  13. Kilgore, K. L., and N. Bhadra. Reversible nerve conduction block using kilohertz frequency alternating current. Neuromodulation 17:242–254, 2014; (discussion 254-5).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kim, C. T., T. A. Linsenmeyer, H. Kim, and H. Yoon. Bladder volume measurement with electrical impedance analysis in spinal cord-injured patients. Am. J. Phys. Med. Rehabil. 77:498–502, 1998.

    Article  CAS  PubMed  Google Scholar 

  15. Koldewijn, E. L., P. E. Van Kerrebroeck, E. Schaafsma, H. Wijkstra, F. M. Debruyne, and G. S. Brindley. Bladder pressure sensors in an animal model. J. Urol. 151:1379–1384, 1994.

    CAS  PubMed  Google Scholar 

  16. Kristiansen, N. K., J. C. Djurhuus, and H. Nygaard. Design and evaluation of an ultrasound-based bladder volume monitor. Med. Biol. Eng. Comput. 42:762–769, 2004.

    Article  CAS  PubMed  Google Scholar 

  17. Kurstjens, G. A., A. Borau, A. Rodriguez, N. J. Rijkhoff, and T. Sinkjaer. Intraoperative recording of electroneurographic signals from cuff electrodes on extradural sacral roots in spinal cord injured patients. J. Urol. 174:1482–1487, 2005.

    Article  CAS  PubMed  Google Scholar 

  18. Kurstjens, G. A. M., Dalmose, A. L., Haugland, M., Rijkhoff, N. J. M., and T. Sinkjær. Long-term electroneurographic recordings from nerve cuff electrodes on sacral nerve root in pigs. Proc. 6th Ann. Conf. IFESS, pp. 22–24, 2001.

  19. Mathews, K. S., H. A. Wark, D. J. Warren, M. B. Christensen, N. F. Nolta, P. C. Cartwright, and R. A. Normann. Acute monitoring of genitourinary function using intrafascicular electrodes: selective pudendal nerve activity corresponding to bladder filling, bladder fullness, and genital stimulation. Urology 84:722–729, 2014.

    Article  PubMed  Google Scholar 

  20. McGee, M. J., C. L. Amundsen, and W. M. Grill. Electrical stimulation for the treatment of lower urinary tract dysfunction after spinal cord injury. J. Spinal Cord Med. 38:135–146, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mendez, A., and M. Sawan. Chronic monitoring of bladder volume: a critical review and assessment of measurement methods. Can. J. Urol. 18:5504–5516, 2011.

    PubMed  Google Scholar 

  22. Mendez, A., M. Sawan, T. Minagawa, and J. J. Wyndaele. Estimation of bladder volume from afferent neural activity. IEEE Trans. Neural Syst. Rehabil. Eng. 21:704–715, 2013.

    Article  PubMed  Google Scholar 

  23. Milsom, I., P. Abrams, L. Cardozo, R. G. Roberts, J. Thuroff, and A. J. Wein. How widespread are the symptoms of an overactive bladder and how are they managed? A population-based prevalence study. BJU Int. 87:760–766, 2001.

    Article  CAS  PubMed  Google Scholar 

  24. Park, J. H., C. Kim, J. Shin, C. Im, C. S. Koh, I. S. Seo, S. J. Kim, and H. Shin. Detecting bladder fullness through the ensemble activity patterns of the spinal cord unit population in a somatovisceral convergence environment. J. Neural Eng. 10:056009, 2013.

    Article  PubMed  Google Scholar 

  25. Petrican, P., and M. A. Sawan. Design of a miniaturized ultrasonic bladder volume monitor and subsequent preliminary evaluation on 41 enuretic patients. IEEE Trans. Rehabil. Eng. 6:66–74, 1998.

    Article  CAS  PubMed  Google Scholar 

  26. Provost, B., and M. Sawan. Proposed new bladder volume monitoring device based on impedance measurement. Med. Biol. Eng. Comput. 35:691–694, 1997.

    Article  CAS  PubMed  Google Scholar 

  27. Rajagopalan, S., M. Sawan, E. Ghafar-Zadeh, O. Savadogo, and V. P. Chodavarapu. A polypyrrole-based strain sensor dedicated to measure bladder volume in patients with urinary dysfunction. Sensors 8:5081–5095, 2008.

    Article  CAS  PubMed Central  Google Scholar 

  28. Seif, C., B. Herberger, E. Cherwon, F. J. Martinez Portillo, M. Molitor, T. Stieglitz, G. Bohler, S. Zendler, K. P. Junemann, and P. M. Braun. Urinary bladder volumetry by means of a single retrosymphysically implantable ultrasound unit. Neurourol. Urodyn. 23:680–684, 2004.

    Article  CAS  PubMed  Google Scholar 

  29. Takayama, K., M. Takei, T. Soejima, and J. Kumazawa. Continuous monitoring of bladder pressure in dogs in a completely physiological state. Br. J. Urol. 60:428–432, 1987.

    Article  CAS  PubMed  Google Scholar 

  30. Wein, A. J. Pharmacologic options for the overactive bladder. Urology 51:43–47, 1998.

    Article  CAS  PubMed  Google Scholar 

  31. Wenzel, B. J., J. W. Boggs, K. J. Gustafson, and W. M. Grill. Detecting the onset of hyper-reflexive bladder contractions from the electrical activity of the pudendal nerve. IEEE Trans. Neural Syst. Rehabil. Eng. 13:428–435, 2005.

    Article  PubMed  Google Scholar 

  32. Yamada, A., M. Fuse, T. Aoyagi, H. Hosaka, H. Toma, and H. Yanagisawa. Preventive equipment for urinary incontinence: a device employing lower abdominal impendance changes. Int. J. Artif. Organs 17:146–150, 1994.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Physicians’ Incorporated Services Foundation (Grant #12-30), as well as by the Center for Research in Advanced Neural Implant Applications (CRANIA) at the University of Toronto. The authors wish to thank Rainer de Guzman for his help with the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Zariffa.

Additional information

Associate Editor Leonidas Iasemidis oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zariffa, J., Grouza, V., Popovic, M.R. et al. A Phase-Based Electrical Plethysmography Approach to Bladder Volume Measurement. Ann Biomed Eng 44, 1299–1309 (2016). https://doi.org/10.1007/s10439-015-1397-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1397-1

Keywords

Navigation