Skip to main content
Log in

Diffuse Interface Methods for Modeling Drug-Eluting Stent Coatings

  • Medical Stents: State of the Art and Future Directions
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

An overview of diffuse interface models specific to drug-eluting stent coatings is presented. Microscale heterogeneities, both in the coating and use environment, dictate the performance of these coatings. Using diffuse interface methods, these heterogeneities can be explicitly incorporated into the model equations with relative ease. This enables one to predict the complex microstructures that evolve during coating fabrication and subsequent impact on drug release. Examples are provided that illustrate the wide range of phenomena that can be addressed with diffuse interface models including: crystallization, constrained phase separation, hydrolytic degradation, and heterogeneous binding. Challenges associated with the lack of material property data and numerical solution of the model equations are also highlighted. Finally, in light of these potential drawbacks, the potential to utilize diffuse interface models to help guide product and process development is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Abizaid, A. and J. R. Costa. New drug-eluting stents: an overview on biodegradable and polymer-free next-generation stent dystems. Circ. Cardiovasc. Interv. 3(4):384–393, 2010.

    Article  CAS  PubMed  Google Scholar 

  2. Allen, S. and J. Cahn. A microscopic theory of domain wall motion and its experimental verification in Fe-Al alloy domain growth kinetics. J. Phys. 38:C7–C51, 1977.

    Google Scholar 

  3. Alsoy, S. and J. L. Duda. Modeling of multicomponent drying of polymer films. AIChE J. 45(4):896–905, 1999.

    Article  CAS  Google Scholar 

  4. Barocas, V., W. Drasler II, T. Girton, I. Guler, D. Knapp, J. Moeller, and E. Parsonage. A dissolution-diffusion model for the TAXUS™ drug-eluting stent with surface burst estimated from continuum percolation. J. Biomed. Mater. Res. B 90B(1):267–274, 2008.

    Article  Google Scholar 

  5. Belu, A., C. Mahoney, and K. Wormuth. Chemical imaging of drug eluting coatings: combining surface analysis and confocal raman microscopy. J. Control. Release 126:111–121, 2008.

    Article  CAS  PubMed  Google Scholar 

  6. Cahn, J. W., and W. C. Carter. Crystal shapes and phase equilibria: a common mathematical basis. Metall. Mater. Trans. A 27(6):1431–1440, 1996.

    Article  Google Scholar 

  7. Cahn, J., and J. Hilliard. Free energy of nonuniform systems. I. Interfacial free energy. J. Chem. Phys. 28:258–67, 1958.

    Article  CAS  Google Scholar 

  8. de Groot, S. R., and P. Mazur. Non-equilibrium Thermodynamics. Dover Books on Physics Series. Mineola: Dover Publications, 1984.

    Google Scholar 

  9. Duarte, Í., J. L. Santos, J. F. Pinto, and M. Temtem. Screening methodologies for the development of spray-dried amorphous solid dispersions. Pharm. Res. 32(1):222–237, 2014.

    Article  PubMed  Google Scholar 

  10. Duda, J., Y. Ni, and J. Vrentas. An equation relating self-diffusion and mutual diffusion coefficients in polymer-solvent systems. Macromolecules 12(3):459–462, 1979.

    Article  CAS  Google Scholar 

  11. Flory, P. Thermodynamics of high polymer solutions. J. Chem. Phys. 9(8):660, 1941.

    Article  CAS  Google Scholar 

  12. Forrey, C., D. M. Saylor, J. S. Silverstein, J. F. Douglas, E. M. Davis, and Y. A. Elabd. Prediction and validation of diffusion coefficients in a model drug delivery system using microsecond atomistic molecular dynamics simulation and vapour sorption analysis. Soft Matter 10(38):7480–7494, 2014.

    Article  CAS  PubMed  Google Scholar 

  13. Frenkel, D., and B. Smit. Understanding Molecular Simulation, 2nd edn. Orlando: Academic Press, Inc., 2001.

    Google Scholar 

  14. Guo, J., D. M. Saylor, E. P. Glaser, and D. V. Patwardhan. Impact of artificial plaque composition on drug transport. J. Pharm. Sci. 102(6):1905–1914, 2013.

    Article  CAS  PubMed  Google Scholar 

  15. Gupta, J., C. Nunes, S. Vyas, and S. Jonnalagadda. Prediction of solubility parameters and miscibility of pharmaceutical compounds by molecular dynamics simulations. J. Phys. Chem. B 115(9):2014–2023, 2011.

    Article  CAS  PubMed  Google Scholar 

  16. Guyer, J. E., W. J. Boettinger, J. A. Warren, and G. B. McFadden. Phase field modeling of electrochemistry. I. Equilibrium. Phys. Rev. E 69:021603, 2004.

    Google Scholar 

  17. Hansen, C. Hansen Solubility Parameters: A User’s Handbook. Boca Raton: CRC Press, 2007.

    Book  Google Scholar 

  18. Heroux, M. A., R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring, A. Williams, and K. S. Stanley. An overview of the trilinos project. ACM Trans. Math. Softw. 31(3):397–423, 2005.

    Article  Google Scholar 

  19. Horner, M., S. Joshi, V. Dhruva, S. Sett, and S. F. C. Stewart. A two-species drug delivery model is required to predict deposition from drug-eluting stents. Cardiovasc. Eng. Technol. 1(3):225–234, 2010.

    Article  Google Scholar 

  20. Kamath, K., J. Barry, and K. Miller. The TAXUS™drug-eluting stent: a new paradigm in controlled drug delivery. Adv. Drug Deliv. Rev. 58:412–36, 2006.

    Article  CAS  PubMed  Google Scholar 

  21. Kim, C. S., D. M. Saylor, M. K. McDermott, D. V. Patwardhan, and J. A. Warren. Modeling solvent evaporation during the manufacture of controlled drug-release coatings and the impact on release kinetics. J. Biomed. Mater. Res. B 90(2):688–699, 2009.

    Article  Google Scholar 

  22. Lemos, P., P. Serruys, and J. Sousa. Drug-eluting stents. Circulation 107(24):3003–3007, 2003.

    Article  PubMed  Google Scholar 

  23. Levin, A. D., N. Vukmirovic, C. W. Hwang, and E. R. Edelman. Specific binding to intracellular proteins determines arterial transport properties for rapamycin and paclitaxel. Proc. Natl. Acad. Sci. 101(25):9463–9467, 2004.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Mahieu, A., J. F. Willart, E. Dudognon, F. Danède F, and M. Descamps. A new protocol to determine the solubility of drugs into polymer matrixes. Mol. Pharm. 10(2):560–566, 2013.

    Article  CAS  PubMed  Google Scholar 

  25. McDermott, M. K. (private communication).

  26. McDermott, M. K., D. M. Saylor, R. Casas, B. J. Dair, J. Guo, C. S. Kim, C. M. Mahoney, K. Ng, S. K. Pollack, and D. V. Patwardhan. Microstructure and elution of tetracycline from block copolymer coatings. J. Pharm. Sci. 99(6):2777–2785, 2010.

    Article  CAS  PubMed  Google Scholar 

  27. McGinty, S., S. McKee, C. McCormick, and M. Wheel. Release mechanism and parameter estimation in drug-eluting stent systems: analytical solutions of drug release and tissue transport. Math. Med. Biol., (2014). doi:10.1093/imammb/dqt025.

  28. Michels, J. J., and E. Moons. Simulation of surface-directed phase separation in a solution-processed polymer/PCBM blend. Macromolecules 46(21):8693–8701, 2013.

    Article  CAS  Google Scholar 

  29. Occhipinti, P., and P. C. Griffiths. Quantifying diffusion in mucosal systems by pulsed-gradient spin-echo NMR. Adv. Drug Deliv. Rev. 60(15):1570–1582, 2008.

    Article  CAS  PubMed  Google Scholar 

  30. Ohta, T., and K. Kawasaki. Equilibrium morphology of block copolymer melts. Macromolecules 19(10):2621–2632, 1986.

    Article  CAS  Google Scholar 

  31. Saylor, D. M., J. E. Guyer, D. Wheeler, and J. A. Warren. Predicting microstructure development during casting of drug-eluting coatings. Acta Biomater. 7(2):604–613, 2011.

    Article  CAS  PubMed  Google Scholar 

  32. Saylor, D. M., C. S. Kim, D. V. Patwardhan, and J. A. Warren. Diffuse-interface theory for structure formation and release behavior in controlled drug release systems. Acta Biomater. 3(6):851–864, 2007.

    Article  CAS  PubMed  Google Scholar 

  33. Saylor, D. M., J. E. Soneson, J. J. Kleinedler, M. Horner, and J. A. Warren. A structuresensitive continuum model of arterial drug deposition. Int. J. Heat Mass Transfer 82(C):468–478, 2015.

    Article  Google Scholar 

  34. Silva, G., J. Eckelt, M. Gonçalves, and B. Wolf. Thermodynamics of pseudo-ternary systems as a tool to predict the morphologies of cellulose acetate/polystyrene blends cast from tetrahydrofuran solutions. Polymer 44(4):1075–1080, 2003.

    Article  CAS  Google Scholar 

  35. Spencer, P. J. A brief history of CALPHAD. Calphad 32(1):1–8, 2008.

    Article  CAS  Google Scholar 

  36. Torquato, S. Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Interdisciplinary Applied Mathematics. New York: Springer, 2002.

    Book  Google Scholar 

  37. Tzafriri, A. R., A. Groothuis, G. S. Price, and E. R. Edelman. Stent elution rate determines drug deposition and receptor-mediated effects. J. Control. Release 161(3):1–9, 2010.

    Google Scholar 

  38. Tzafriri, A. R., A. D. Levin, and E. R. Edelman. Diffusion-limited binding explains binary dose response for local arterial and tumour drug delivery. Cell Prolif. 42(3):348–363, 2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Tzafriri, A. R., N. Vukmirovic, V. B. Kolachalama, I. Astafieva, and E. R. Edelman. Lesion complexity determines arterial drug distribution after local drug delivery. J. Control. Release 142(3):332–338, 2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Ukmar, T., M. Gaberšček, F. Merzel, and A. Godec. Modus operandi of controlled release from mesoporous matrices: a theoretical perspective. Phys. Chem. Chem. Phys. 13(33):15311–15317, 2011.

    Article  CAS  PubMed  Google Scholar 

  41. Von Meerwall, E, E. Amis, and J. Ferry. Self-diffusion in solutions of polystyrene in tetrahydrofuran: comparison of concentration dependences of the diffusion coefficients of polymer, solvent, and a ternary probe component. Macromolecules 18(2):260–266, 1985.

    Article  Google Scholar 

  42. Vrentas, J., and J. Duda. Diffusion in polymer–solvent systems. I. Reexamination of the free-volume theory. J. Polym. Sci. 15(3):403–416, 1977.

    CAS  Google Scholar 

  43. Welland, M. J., D. Wolf, and J. E. Guyer. Multicomponent phase-field model for extremely large partition coefficients. Phys. Rev. E 89(1):012409, 2014.

    Article  Google Scholar 

  44. Wodo, O., and B. Ganapathysubramanian. Modeling morphology evolution during solvent-based fabrication of organic solar cells. Comput. Mater. Sci. 55:113–126, 2012.

    Article  CAS  Google Scholar 

Download references

Conflict of interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Disclaimers

The mention of commercial products, their source, or their use in connection with the material reported herein is not to be construed as either an actual or implied endorsement of the US Food and Drug Administration. Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Saylor.

Additional information

Communicated by Associate Editor Sean McGinty oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saylor, D.M., Forrey, C., Kim, CS. et al. Diffuse Interface Methods for Modeling Drug-Eluting Stent Coatings. Ann Biomed Eng 44, 548–559 (2016). https://doi.org/10.1007/s10439-015-1375-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1375-7

Keywords

Navigation