Skip to main content
Log in

Modeling of Experimental Atherosclerotic Plaque Delamination

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A cohesive zone model (CZM) approach is applied to simulate atherosclerotic plaque delamination experiments in mouse abdominal aorta specimens. A three-dimensional finite element model is developed for the experiments. The aortic wall is treated as a fiber-reinforced, highly deformable, incompressible material, and the Holzapfel–Gasser–Ogden (HGO) model is adopted for the aortic bulk material behavior. Cohesive elements are placed along the plaque-media interface along which delamination occurs. The 3D specimen geometry is created based on images from the experiments and certain simplifying approximations. A set of HGO and CZM parameter values is determined based on values suggested in the literature and through matching simulation predictions of the load vs. load-point displacement curve with experimental measurements for one loading–delamination–unloading cycle. Using this set of parameter values, simulation predictions for four other loading–delamination–unloading cycles are obtained, which show good agreement with experimental measurements. The findings of the current study demonstrate the applicability of the CZM approach in arterial tissue failure simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Alkhouli, N., J. Mansfield, E. Green, J. Bell, B. Knight, N. Liversedge, J. C. Tham, R. Welbourn, A. C. Shore, K. Kos, and C. P. Winlove. The mechanical properties of human adipose tissues and their relationships to the structure and composition of the extracellular matrix. Am. J. Physiol. Endocrinol. Metab. 305:E1427–E1435, 2013.

    Article  CAS  PubMed  Google Scholar 

  2. ABAQUS, Analysis User’s Manual Version 6.12. Dassault Systemes Corp, 2013.

  3. Badel, P., S. Avril, M. A. Sutton, and S. M. Lessner. Numerical simulation of arterial dissection during balloon angioplasty of atherosclerotic coronary arteries. J. Biomech. 47(4):878–889, 2014.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Benzeggagh, M. L., and M. Kenane. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed- mode bending apparatus. Compos. Sci. Technol. 49:439–449, 1996.

    Article  Google Scholar 

  5. Camanho, P. P., C. G. Dávila, and M. F. de Moura. Numerical simulation of mixed-mode progressive delamination in composite materials. J. Compos. Mater. 37(16):1415–1438, 2003.

    Article  Google Scholar 

  6. Chen, X., X. Deng, and M. A. Sutton. Simulation of stable tearing crack growth events using the cohesive zone model approach. Eng. Fract. Mech. 99:223–238, 2013.

    Article  Google Scholar 

  7. Chen, X., X. Deng, M. A. Sutton, and P. Zavattieri. An inverse analysis of cohesive zone model parameter values for ductile crack growth simulations. Int. J. Mech. Sci. 79:206–215, 2014.

    Article  Google Scholar 

  8. Collins, M. J., M. Bersi, E. Wilson, and J. D. Humphrey. Mechanical properties of suprarenal and infrarenal abdominal aorta: implications for mouse models of aneurysms. Med. Eng. Phys. 33(10):1262–1269, 2011.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Collins, M. J., J. F. Eberth, E. Wilson, and J. D. Humphrey. Acute mechanical effects of elastase on the infrarenal mouse aorta: implications for models of aneurysms. J Biomech 45(4):660–665, 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Comley, K. and N. Fleck. The mechanical response of porcine adipose tissue. ASME J. Biomech. Eng. 1–30, 2009.

  11. Eberth, J. F., A. I. Taucer, E. Wilson, and J. D. Humphrey. Mechanics of carotid arteries in a mouse model of Marfan Syndrome. Ann. Biomed. Eng. 37(6):1093–1104, 2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Ferrante, G., P. Presbitero, R. Whitbourn, and P. Barlis. Current applications of optical coherence tomography for coronary intervention. Int. J. Cardiol. 165:7–16, 2013.

    Article  PubMed  Google Scholar 

  13. Ferrara, A., and A. Pandolfi. A numerical study of arterial media dissection processes. Int. J. Fract. 166(1–2):21–33, 2010.

    Article  CAS  Google Scholar 

  14. Gasser, T. C., and G. A. Holzapfel. Modeling the propagation of arterial dissection. Eur. J. Mech. A 25(4):617–633, 2006.

    Article  Google Scholar 

  15. Gasser, T. C., and G. A. Holzapfel. Modeling plaque fissuring and dissection during balloon angioplasty intervention. Ann. Biomed. Eng. 35(5):711–723, 2007.

    Article  PubMed  Google Scholar 

  16. Gasser, T. C., R. W. Ogden, and G. A. Holzapfel. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3(6):15–35, 2006.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Gregersen, H., J. Zhao, X. Lu, J. Zhou, and E. Falk. Remodeling of the zero-stress state and residual strains in apoE-deficient mouse aorta. Biorheology 44(2):75–89, 2007.

    CAS  PubMed  Google Scholar 

  18. Holzapfel, G. A. Biomechanics of soft tissue. In: Handbook of Materials Behavior Models: Composite Media, Biomaterials1st, edited by J. Lemaitre. Boston: Academic, 2001, pp. 1057–1071.

    Chapter  Google Scholar 

  19. Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61(1):1–48, 2000.

    Article  Google Scholar 

  20. Honye, J., D. J. Mahon, A. Jain, C. J. White, S. R. Ramee, J. B. Wallis, A. al-Zarka, and J. Tobis. M, Morphological effects of coronary balloon angioplasty in vivo assessed by intravascular ultrasound imaging. Circulation 85:1012–1025, 1992.

    Article  CAS  PubMed  Google Scholar 

  21. Huang, H., R. Virmani, H. Younis, A. P. Burke, R. D. Kamm, and R. T. Lee. The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation 103(8):1051–1056, 2001.

    Article  CAS  PubMed  Google Scholar 

  22. Loree, H. M., R. D. Kamm, R. G. Stringfellow, and R. T. Lee. Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ. Res. 71(4):850–858, 1992.

    Article  CAS  PubMed  Google Scholar 

  23. Meir, K. S., and E. Leitersdorf. Atherosclerosis in the apolipoprotein-E-deficient mouse: a decade of progress. Arterioscler. Thromb. Vasc. Biol. 24(6):1006–1014, 2004.

    Article  CAS  PubMed  Google Scholar 

  24. Nakashima, Y., A. S. Plump, E. W. Raines, J. L. Breslow, and R. Ross. ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler. Thromb. Vasc. Biol. 14(1):133–140, 1994.

    Article  CAS  Google Scholar 

  25. Sakai, S., K. Mizuno, S. Yokoyama, J. Tanabe, T. Shinada, K. Seimiya, M. Takano, T. Ohba, M. Tomimura, R. Uemura, and T. Imaizumi. Morphologic changes in infarct-related plaque after coronary stent placement: a serial angioscopy study. J. Am. Coll. Cardiol. 42(9):1558–1565, 2003.

    Article  PubMed  Google Scholar 

  26. Szasz, T., G. F. Bomfim, and R. C. Webb. The influence of perivascular adipose tissue on vascular homeostasis. Vasc. Health Risk Manag. 9:105–116, 2013.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Tearney, G. J., et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report From the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J. Am. Coll. Cardiol. 59(12):1058–1072, 2012.

    Article  PubMed  Google Scholar 

  28. Turon, A., P. P. Camanho, J. Costa, and C. G. Dávila. A damage model for the simulation of delamination in advanced composites under variable-mode loading. Mech. Mater. 38(11):1072–1089, 2006.

    Article  Google Scholar 

  29. Van Herck, J. L., G. R. De Meyer, W. Martinet, C. E. Van Hove, K. Foubert, M. H. Theunis, S. Apers, H. Bult, C. J. Vrints, and A. G. Herman. Impaired fibrillin-1 function promotes features of plaque instability in apolipoprotein E-deficient mice. Circulation 120(24):2478–2487, 2009.

    Article  PubMed  Google Scholar 

  30. Verhagen, S. N., and F. L. Visseren. Perivascular adipose tissue as a cause of atherosclerosis. Atherosclerosis 214(1):3–10, 2011.

    Article  CAS  PubMed  Google Scholar 

  31. Virmani, R., J. Narula, M. B. Leon, and J. T. Willerson (eds.). The Vulnerable Atherosclerotic Plaque: Strategies for Diagnosis and Management. Malden: Blackwell Futura, pp. 37–59, 2007.

    Google Scholar 

  32. Wang, Y., J. Ning, J. A. Johnson, M. A. Sutton, and S. M. Lessner. Development of a quantitative mechanical test of atherosclerotic plaque stability. J. Biomech. 44(13):2439–2445, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Research reported in this publication was supported by the National Science Foundation (NSF) under Awards Number CMMI-1200358. The authors thank Ms Lindsey Davis for her assistance with the use of experimental data.

Conflict of interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaomin Deng.

Additional information

Associate Editor Scott I Simon oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leng, X., Chen, X., Deng, X. et al. Modeling of Experimental Atherosclerotic Plaque Delamination. Ann Biomed Eng 43, 2838–2851 (2015). https://doi.org/10.1007/s10439-015-1357-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1357-9

Keywords

Navigation