Skip to main content
Log in

Modeling of Tracer Transport Delays for Improved Quantification of Regional Pulmonary 18F-FDG Kinetics, Vascular Transit Times, and Perfusion

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

18F-FDG-PET is increasingly used to assess pulmonary inflammatory cell activity. However, current models of pulmonary 18F-FDG kinetics do not account for delays in 18F-FDG transport between the plasma sampling site and the lungs. We developed a three-compartment model of 18F-FDG kinetics that includes a delay between the right heart and the local capillary blood pool, and used this model to estimate regional pulmonary perfusion. We acquired dynamic 18F-FDG scans in 12 mechanically ventilated sheep divided into control and lung injury groups (n = 6 each). The model was fit to tracer kinetics in three isogravitational regions-of-interest to estimate regional lung transport delays and regional perfusion. 13NN bolus infusion scans were acquired during a period of apnea to measure regional perfusion using an established reference method. The delayed input function model improved description of 18F-FDG kinetics (lower Akaike Information Criterion) in 98% of studied regions. Local transport delays ranged from 2.0 to 13.6 s, averaging 6.4 ± 2.9 s, and were highest in non-dependent regions. Estimates of regional perfusion derived from model parameters were highly correlated with perfusion measurements based on 13NN-PET (R 2 = 0.92, p < 0.001). By incorporating local vascular transports delays, this model of pulmonary 18F-FDG kinetics allows for simultaneous assessment of regional lung perfusion, transit times, and inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19:716–723, 1974.

    Article  Google Scholar 

  2. Bernstine, H., M. Braun, N. Yefremov, Y. Lamash, R. Carmi, D. Stern, A. Steinmetz, J. Sosna, and D. Groshar. FDG PET/CT early dynamic blood flow and late standardized uptake value determination in hepatocellular carcinoma. Radiology 260:503–510, 2011.

    Article  PubMed  Google Scholar 

  3. Capen, R. L., W. L. Hanson, L. P. Latham, C. A. Dawson, and W. W. Wagner, Jr. Distribution of pulmonary capillary transit times in recruited networks. J. Appl. Physiol. 69(473–478):1990, 1985.

    Google Scholar 

  4. Chen, D. L., M. A. Mintun, and D. P. Schuster. Comparison of methods to quantitate 18F-FDG uptake with PET during experimental acute lung injury. J. Nucl. Med. 45:1583–1590, 2004.

    CAS  PubMed  Google Scholar 

  5. Chen, D. L., and D. P. Schuster. Positron emission tomography with [18F]fluorodeoxyglucose to evaluate neutrophil kinetics during acute lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 286:L834–L840, 2004.

    Article  CAS  PubMed  Google Scholar 

  6. Costa, E. L., G. Musch, T. Winkler, T. Schroeder, R. S. Harris, H. A. Jones, J. G. Venegas, and M. F. Vidal Melo. Mild endotoxemia during mechanical ventilation produces spatially heterogeneous pulmonary neutrophilic inflammation in sheep. Anesthesiology 112:658–669, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  7. de Prost, N., E. L. Costa, T. Wellman, G. Musch, M. R. Tucci, T. Winkler, R. S. Harris, J. Venegas, B. Kavanagh, and M. F. Vidal Melo. Effects of ventilation strategy on distribution of lung inflammatory cell activity. Crit. Care 17:R175, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  8. de Prost, N., E. L. Costa, T. Wellman, G. Musch, T. Winkler, M. R. Tucci, R. S. Harris, J. G. Venegas, and M. F. Vidal Melo. Effects of surfactant depletion on regional pulmonary metabolic activity during mechanical ventilation. J. Appl. Physiol. 111:1249–1258, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  9. de Simone, G., R. B. Devereux, S. R. Daniels, G. Mureddu, M. J. Roman, T. R. Kimball, R. Greco, S. Witt, and F. Contaldo. Stroke volume and cardiac output in normotensive children and adults. Assessment of relations with body size and impact of overweight. Circulation 95:1837–1843, 1997.

    Article  PubMed  Google Scholar 

  10. Fuld, M. K., A. F. Halaweish, S. E. Haynes, A. A. Divekar, J. Guo, and E. A. Hoffman. Pulmonary perfused blood volume with dual-energy CT as surrogate for pulmonary perfusion assessed with dynamic multidetector CT. Radiology 267:747–756, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Galletti, G. G., and J. G. Venegas. Tracer kinetic model of regional pulmonary function using positron emission tomography. J. Appl. Physiol. 93:1104–1114, 2002.

    Article  PubMed  Google Scholar 

  12. Guo, H., R. A. Renaut, and K. Chen. An input function estimation method for FDG-PET human brain studies. Nucl. Med. Biol. 34:483–492, 2007.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Guyton, A. C., D. Polizo, and G. G. Armstrong. Mean circulatory filling pressure measured immediately after cessation of heart pumping. Am. J. Physiol. 179:261–267, 1954.

    CAS  PubMed  Google Scholar 

  14. Harris, R. S., D. B. Willey-Courand, C. A. Head, G. G. Galletti, D. M. Call, and J. G. Venegas. Regional VA, Q, and VA/Q during PLV: effects of nitroprusside and inhaled nitric oxide. J. Appl. Physiol. 92:297–312, 2002.

    PubMed  Google Scholar 

  15. Hartwig, W., E. A. Carter, R. E. Jimenez, R. Jones, A. J. Fischman, C. Fernandez-Del Castillo, and A. L. Warshaw. Neutrophil metabolic activity but not neutrophil sequestration reflects the development of pancreatitis-associated lung injury. Crit. Care Med. 30:2075–2082, 2002.

    Article  CAS  PubMed  Google Scholar 

  16. Herrero, P., J. J. Hartman, M. J. Senneff, and S. R. Bergmann. Effects of time discrepancies between input and myocardial time-activity curves on estimates of regional myocardial perfusion with PET. J. Nucl. Med. 35:558–566, 1994.

    CAS  PubMed  Google Scholar 

  17. Huyer, W., and A. Neumaier. Global optimization by multilevel coordinate search. J. Glob. Optim. 14:331–355, 1999.

    Article  Google Scholar 

  18. Jones, H. A., R. J. Clark, C. G. Rhodes, J. B. Schofield, T. Krausz, and C. Haslett. In vivo measurement of neutrophil activity in experimental lung inflammation. Am. J. Respir. Crit. Care Med. 149:1635–1639, 1994.

    Article  CAS  PubMed  Google Scholar 

  19. Landaw, E. M., and J. J. DiStefano, III. Multiexponential, multicompartmental, and noncompartmental modeling. II. Data analysis and statistical considerations. Am. J. Physiol. 246:R665–R677, 1984.

    CAS  PubMed  Google Scholar 

  20. Melo, M. F., R. S. Harris, J. D. Layfield, and J. G. Venegas. Topographic basis of bimodal ventilation-perfusion distributions during bronchoconstriction in sheep. Am. J. Respir. Crit. Care Med. 171:714–721, 2005.

    Article  PubMed  Google Scholar 

  21. Miles, K. A., M. R. Griffiths, and C. J. Keith. Blood flow-metabolic relationships are dependent on tumour size in non-small cell lung cancer: a study using quantitative contrast-enhanced computer tomography and positron emission tomography. Eur. J. Nucl. Med. Mol. Imaging 33:22–28, 2006.

    Article  CAS  PubMed  Google Scholar 

  22. Musch, G., J. D. Layfield, R. S. Harris, M. F. Melo, T. Winkler, R. J. Callahan, A. J. Fischman, and J. G. Venegas. Topographical distribution of pulmonary perfusion and ventilation, assessed by PET in supine and prone humans. J. Appl. Physiol. 93:1841–1851, 2002.

    Article  PubMed  Google Scholar 

  23. Musch, G., J. G. Venegas, G. Bellani, T. Winkler, T. Schroeder, B. Petersen, R. S. Harris, and M. F. Melo. Regional gas exchange and cellular metabolic activity in ventilator-induced lung injury. Anesthesiology 106:723–735, 2007.

    Article  CAS  PubMed  Google Scholar 

  24. Pajevic, S., S. L. Bacharach, R. E. Carson, and G. H. Weiss. Effects of time delay in cardiac blood flow measurements by bolus H2(15)O. IEEE Trans. Med. Imaging 16:294–300, 1997.

    Article  CAS  PubMed  Google Scholar 

  25. Patlak, C. S., R. G. Blasberg, and J. D. Fenstermacher. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J. Cereb. Blood Flow Metab. 3:1–7, 1983.

    Article  CAS  PubMed  Google Scholar 

  26. Pouzot, C., J. C. Richard, A. Gros, N. Costes, F. Lavenne, D. Le Bars, and C. Guerin. Noninvasive quantitative assessment of pulmonary blood flow with 18F-FDG PET. J. Nucl. Med. 54:1653–1660, 2013.

    Article  CAS  PubMed  Google Scholar 

  27. Presson, Jr., R. G., T. M. Todoran, B. J. De Witt, I. F. McMurtry, and W. W. Wagner, Jr. Capillary recruitment and transit time in the rat lung. J. Appl. Physiol. 83(543–549):1997, 1985.

    Google Scholar 

  28. Rhodes, C. G., P. Wollmer, F. Fazio, and T. Jones. Quantitative measurement of regional extravascular lung density using positron emission and transmission tomography. J. Comput. Assist. Tomogr. 5:783–791, 1981.

    Article  CAS  PubMed  Google Scholar 

  29. Richard, J. C., M. Janier, F. Decailliot, D. Le Bars, F. Lavenne, V. Berthier, M. Lionnet, L. Cinotti, G. Annat, and C. Guerin. Comparison of PET with radioactive microspheres to assess pulmonary blood flow. J. Nucl. Med. 43:1063–1071, 2002.

    PubMed  Google Scholar 

  30. Sackner, M. A., N. Atkins, J. Goldberg, N. Segel, S. Zarzecki, and A. Wanner. Pulmonary arterial blood volume and tissue volume in man and dog. Circ. Res. 34:761–769, 1974.

    Article  CAS  PubMed  Google Scholar 

  31. Saha, D., K. Takahashi, N. de Prost, T. Winkler, M. Pinilla-Vera, R. M. Baron, and M. F. Vidal Melo. Micro-autoradiographic assessment of cell types contributing to 2-deoxy-2-[(18)F]fluoro-D-glucose uptake during ventilator-induced and endotoxemic lung injury. Mol. Imaging Biol. 15:19–27, 2012.

    Article  Google Scholar 

  32. Schroeder, T., M. F. Vidal Melo, G. Musch, R. S. Harris, J. G. Venegas, and T. Winkler. Image-derived input function for assessment of 18F-FDG uptake by the inflamed lung. J. Nucl. Med. 48:1889–1896, 2007.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Schroeder, T., M. F. Vidal Melo, G. Musch, R. S. Harris, J. G. Venegas, and T. Winkler. Modeling pulmonary kinetics of 2-deoxy-2-[(18)F]fluoro-d-glucose during acute lung injury. Acad. Radiol. 15:763–775, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Schroeder, T., M. F. Vidal Melo, G. Musch, R. S. Harris, T. Winkler, and J. G. Venegas. PET imaging of regional 18F-FDG uptake and lung function after cigarette smoke inhalation. J. Nucl. Med. 48:413–419, 2007.

    Article  PubMed  Google Scholar 

  35. Sergiacomi, G., F. Bolacchi, M. Cadioli, M. L. Angeli, F. Fucci, S. Crusco, P. Rogliani, G. Pezzuto, F. Romeo, E. Mariano, and G. Simonetti. Combined pulmonary fibrosis and emphysema: 3D time-resolved MR angiographic evaluation of pulmonary arterial mean transit time and time to peak enhancement. Radiology 254:601–608, 2010.

    Article  PubMed  Google Scholar 

  36. Sokoloff, L., M. Reivich, C. Kennedy, M. H. Des Rosiers, C. S. Patlak, K. D. Pettigrew, O. Sakurada, and M. Shinohara. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J. Neurochem. 28:897–916, 1977.

    Article  CAS  PubMed  Google Scholar 

  37. van den Hoff, J., W. Burchert, W. Muller-Schauenburg, G. J. Meyer, and H. Hundeshagen. Accurate local blood flow measurements with dynamic PET: fast determination of input function delay and dispersion by multilinear minimization. J. Nucl. Med. 34:1770–1777, 1993.

    PubMed  Google Scholar 

  38. Vidal Melo, M. F., D. Layfield, R. S. Harris, K. O’Neill, G. Musch, T. Richter, T. Winkler, A. J. Fischman, and J. G. Venegas. Quantification of regional ventilation-perfusion ratios with PET. J. Nucl. Med. 44:1982–1991, 2003.

    PubMed  Google Scholar 

  39. Vidal Melo, M. F., T. Winkler, R. S. Harris, G. Musch, R. E. Greene, and J. G. Venegas. Spatial heterogeneity of lung perfusion assessed with (13)N PET as a vascular biomarker in chronic obstructive pulmonary disease. J. Nucl. Med. 51:57–65, 2010.

    Article  PubMed  Google Scholar 

  40. Wagner, Jr., W. W., L. P. Latham, M. N. Gillespie, J. P. Guenther, and R. L. Capen. Direct measurement of pulmonary capillary transit times. Science 218:379–381, 1982.

    Article  PubMed  Google Scholar 

  41. Wagner, Jr., W. W., L. P. Latham, W. L. Hanson, S. E. Hofmeister, and R. L. Capen. Vertical gradient of pulmonary capillary transit times. J. Appl. Physiol. 61(1270–1274):1986, 1985.

    Google Scholar 

  42. Wellman, T. J., T. Winkler, E. L. Costa, G. Musch, R. S. Harris, J. G. Venegas, and M. F. Melo. Measurement of regional specific lung volume change using respiratory-gated PET of inhaled 13N-nitrogen. J. Nucl. Med. 51:646–653, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Wellman, T. J., T. Winkler, E. L. Costa, G. Musch, R. S. Harris, J. G. Venegas, and M. F. Vidal Melo. Effect of regional lung inflation on ventilation heterogeneity at different length scales during mechanical ventilation of normal sheep lungs. J. Appl. Physiol. 113:947–957, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Wellman, T. J., T. Winkler, E. L. Costa, G. Musch, R. S. Harris, H. Zheng, J. G. Venegas, and M. F. Vidal Melo. Effect of local tidal lung strain on inflammation in normal and lipopolysaccharide-exposed sheep*. Crit. Care Med. 42:e491–e500, 2014.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Zanotti-Fregonara, P., M. Fadaili el, R. Maroy, C. Comtat, A. Souloumiac, S. Jan, M. J. Ribeiro, V. Gaura, A. Bar-Hen, and R. Trebossen. Comparison of eight methods for the estimation of the image-derived input function in dynamic [(18)F]-FDG PET human brain studies. J. Cereb. Blood Flow Metab. 29:1825–1835, 2009.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants R01-HL121228 and R01-HL086827 from the National Heart, Lung, and Blood Institute. The authors declare that they have no conflicts of interest. Two authors (T. Winkler and M. F. Vidal Melo) have a patent related to the computation of the image-derived input function used in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos F. Vidal Melo.

Additional information

Associate Editor Merryn Tawhai oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 241 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wellman, T.J., Winkler, T. & Vidal Melo, M.F. Modeling of Tracer Transport Delays for Improved Quantification of Regional Pulmonary 18F-FDG Kinetics, Vascular Transit Times, and Perfusion. Ann Biomed Eng 43, 2722–2734 (2015). https://doi.org/10.1007/s10439-015-1327-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1327-2

Keywords

Navigation