Skip to main content
Log in

IVUS-Based FSI Models for Human Coronary Plaque Progression Study: Components, Correlation and Predictive Analysis

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Atherosclerotic plaque progression is believed to be associated with mechanical stress conditions. Patient follow-up in vivo intravascular ultrasound coronary plaque data were acquired to construct fluid–structure interaction (FSI) models with cyclic bending to obtain flow wall shear stress (WSS), plaque wall stress (PWS) and strain (PWSn) data and investigate correlations between plaque progression measured by wall thickness increase (WTI), cap thickness increase (CTI), lipid depth increase (LDI) and risk factors including wall thickness (WT), WSS, PWS, and PWSn. Quarter average values (n = 178–1016) of morphological and mechanical factors from all slices were obtained for analysis. A predictive method was introduced to assess prediction accuracy of risk factors and identify the optimal predictor(s) for plaque progression. A combination of WT and PWS was identified as the best predictor for plaque progression measured by WTI. Plaque WT had best overall correlation with WTI (r = −0.7363, p < 1E−10), cap thickness (r = 0.4541, p < 1E−10), CTI (r = −0.4217, p < 1E−8), LD (r = 0.4160, p < 1E−10), and LDI (r = −0.4491, p < 1E−10), followed by PWS (with WTI: (r = −0.3208, p < 1E−10); cap thickness: (r = 0.4541, p < 1E−10); CTI: (r = −0.1719, p = 0.0190); LD: (r = −0.2206, p < 1E−10); LDI: r = 0.1775, p < 0.0001). WSS had mixed correlation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Cardoso, L., and S. Weinbaum. Changing views of the biomechanics of vulnerable plaque rupture: a review. Ann. Biomed. Eng. 42(2):415–431, 2014.

    Article  PubMed  Google Scholar 

  2. Fernández-Ortiz, A., L. J. Jiménez-Borreguero, J. L. Peñalvo, J. M. Ordovás, A. Mocoroa, L. Fernández-Friera, M. Laclaustra, L. García, J. Molina, J. M. Mendiguren, B. López-Melgar, V. M. de Vega, J. C. Alonso-Farto, E. Guallar, H. Sillesen, J. H. Rudd, Z. A. Fayad, B. Ibañez, G. Sanz, and V. Fuster. The Progression and Early detection of Subclinical Atherosclerosis (PESA) study: rationale and design. Am. Heart J. 166(6):990–998, 2013.

    Article  PubMed  Google Scholar 

  3. Fitzmaurice, G. M., N. M. Laird, and J. H. Ware. Applied Longitudinal Analysis. Hoboken, NJ: Wiley-Interscience, 2004.

    Google Scholar 

  4. Fleg, J. L., G. W. Stone, Z. A. Fayad, J. F. Granada, T. S. Hatsukami, F. D. Kolodgie, J. Ohayon, R. Pettigrew, M. S. Sabatine, G. J. Tearney, S. Waxman, M. J. Domanski, P. R. Srinivas, and J. Narula. Detection of high-risk atherosclerotic plaque: report of the NHLBI working group on current status and future directions. JACC Cardio Imaging. 5(9):941–955, 2012.

    Article  Google Scholar 

  5. Friedman, M. H., C. B. Bargeron, O. J. Deters, G. M. Hutchins, and F. F. Mark. Correlation between wall shear and intimal thickness at a coronary artery branch. Atherosclerosis 68:27–33, 1987.

    Article  CAS  PubMed  Google Scholar 

  6. Friedman, M. H., R. Krams, and K. B. Chandran. Flow interactions with cells and tissues: cardiovascular flows and fluid–structure interactions. Ann. Biomed. Eng. 38:1178–1187, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Fuster, V. The vulnerable atherosclerotic plaque: understanding, identification, and modification. In: AHA Monograph Series, edited by V. Fuster, J. F. Cornhill, R. E. Dinsmore, J. T. Fallon, W. Insull, P. Libby, S. Nissen, M. E. Rosenfeld, and W. D. Wagner. Armonk, NY: Futura Publishing, 1998.

  8. Holzapfel, G. A., J. J. Mulvihill, E. M. Cunnane, and M. T. Walsh. Computational approaches for analyzing the mechanics of atherosclerotic plaques: a review. J. Biomech. 47(4):859–869, 2014.

    Article  PubMed  Google Scholar 

  9. Holzapfel, G. A., G. Sommer, and P. Regitnig. Anisotropic mechanical properties of tissue components in human atherosclerotic plaques. J. Biomech. Eng. 126(5):657–665, 2004.

    Article  PubMed  Google Scholar 

  10. Huang, X., C. Yang, C. Yuan, F. Liu, G. Canton, J. Zheng, P. K. Woodard, G. A. Sicard, and D. Tang. Patient-specific artery shrinkage and 3D zero-stress state in multi-component 3D FSI models for carotid atherosclerotic plaques based on in vivo MRI data. Mol. Cell Biomech. 6(2):121–134, 2009.

    PubMed Central  PubMed  Google Scholar 

  11. Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation: positive correlation between plaque location and low and oscillating shear stress. Arteriosclerosis. 5:293–302, 1985.

    Article  CAS  PubMed  Google Scholar 

  12. Kural, M. H., M. C. Cai, D. Tang, T. Gwyther, J. Zheng, and K. L. Billiar. Planar biaxial characterization of diseased human coronary and carotid arteries for computational modeling. J. Biomech. 45(5):790–798, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Le Floc’h, S., G. Cloutier, Y. Saijo, G. Finet, S. K. Yazdani, F. Deleaval, G. Rioufol, R. I. Pettigrew, and J. Ohayon. A four-criterion selection procedure for atherosclerotic plaque elasticity reconstruction based on in vivo coronary intravascular ultrasound radial strain sequences. Ultrasound Med. Biol. 38(12):2084–2097, 2012.

    Article  PubMed  Google Scholar 

  14. Loree, H. M., R. D. Kamm, R. G. Stringfellow, and R. T. Lee. Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ. Res. 71:850–858, 1992.

    Article  CAS  PubMed  Google Scholar 

  15. Ohayon, J., G. Finet, A. M. Gharib, D. A. Herzka, P. Tracqui, et al. Necrotic core thickness and positive arterial remodeling index: emergent biomechanical factors for evaluating the risk of plaque rupture. Am. J. Physiol. Heart Circ. Physiol. 295:H717–H727, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Pinherio, J. C., and D. M. Bates. Mixed Effects Models in S and S-PLUS. New York: Springer, 2000.

  17. Richardson, P. D. Biomechanics of plaque rupture: progress, problems, and new frontiers. Ann. Biomed. Eng. 30(4):524–536, 2002.

    Article  PubMed  Google Scholar 

  18. Richardson, P. D., M. J. Davies, and G. V. Born. Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet 2(8669):941–944, 1989.

  19. Samady, H., P. Eshtehardi, M. C. McDaniel, J. Suo, S. S. Dhawan, C. Maynard, L. H. Timmins, A. A. Quyyumi, and D. P. Giddens. Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation 124:779–788, 2011.

    Article  CAS  PubMed  Google Scholar 

  20. Schall, R. Estimation in generalized linear models with random effects. Biometrika 78:719–727, 1991.

    Article  Google Scholar 

  21. Stone, P. H., S. Saito, S. Takahashi, Y. Makita, S. Nakamura, T. Kawasaki, A. Takahashi, T. Katsuki, S. Nakamura, A. Namiki, A. Hirohata, T. Matsumura, S. Yamazaki, H. Yokoi, S. Tanaka, S. Otsuji, F. Yoshimachi, J. Honye, D. Harwood, M. Reitman, A. U. Coskun, M. I. Papafaklis, and C. L. Feldman. Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the PREDICTION Study. Circulation 126(2):172–181, 2012.

    Article  PubMed  Google Scholar 

  22. Tang, D., R. D. Kamm, C. Yang, J. Zheng, G. Canton, R. Bach, X. Huang, T. S. Hatsukami, J. Zhu, G. Ma, A. Maehara, G. S. Mintz, and C. Yuan. Image-based modeling for better understanding and assessment of atherosclerotic plaque progression and vulnerability: data, modeling, validation, uncertainty and predictions. J. Biomech. 47(4):834–846, 2014.

    Article  PubMed  Google Scholar 

  23. Tang, D., Z. Teng, G. Canton, C. Yang, M. Ferguson, X. Huang, J. Zheng, P. K. Woodard, and C. Yuan. Sites of rupture in human atherosclerotic carotid plaques are associated with high structural stresses: an in vivo MRI-based 3D fluid–structure interaction study. Stroke 40(10):3258–3263, 2009. Featured article on MDlinx.com.

  24. Tang, D., C. Yang, G. Canton, Z. Wu, T. S. Hatsukami, and C. Yuan. Correlations between carotid plaque progression and mechanical stresses change sign over time: a patient follow up study using MRI and 3D FSI models. BioMed. Eng. Online 12:105, 2013. doi:10.1186/1475-925X-12-105.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Tang, D., C. Yang, J. Zheng, P. K. Woodard, G. A. Sicard, J. E. Saffitz, and C. Yuan. 3D MRI-based multi-component FSI models for atherosclerotic plaques, a 3-D FSI model. Ann. Biomed. Eng. 32(7):947–960, 2004.

    Article  PubMed  Google Scholar 

  26. Underhill, H. R., T. S. Hatsukami, Z. A. Fayad, V. Fuster, and C. Yuan. MRI of carotid atherosclerosis: clinical implications and future directions. Nat. Rev. Cardiol. 7(3):165–173, 2010.

    Article  PubMed  Google Scholar 

  27. Venables, W. N., and B. D. Ripley. Modern Applied Statistics with S (4th ed.). New York: Springer, 2002.

    Book  Google Scholar 

  28. Wahle, A., P. M. Prause, S. C. DeJong, and M. Sonka. Geometrically correct 3-D reconstruction of intravascular ultrasound images by fusion with biplane angiography–methods and validation. IEEE Trans. Med. Imaging 18(8):686–699, 1999.

    Article  CAS  PubMed  Google Scholar 

  29. Wolfinger, R., and M. O’Connell. Generalized linear mixed models: a pseudo-likelihood approach. J. Stat. Comput. Simul. 48:233–243, 1993.

    Article  Google Scholar 

  30. Xie, Y., G. S. Mintz, J. Yang, H. Doi, A. Iñiguez, G. D. Dangas, P. W. Serruys, J. A. McPherson, B. G. W. Stone, and A. Maehara. Clinical outcome of nonculprit plaque ruptures in patients with acute coronary syndrome in the PROSPECT study. JACC Cardiovasc. Imaging 7(4):397–405, 2014.

    Article  PubMed  Google Scholar 

  31. Xu, D., D. S. Hippe, H. R. Underhill, M. Oikawa-Wakayama, L. Dong, K. Yamada, C. Yuan, and T. S. Hatsukami. Prediction of high-risk plaque development and plaque progression with the carotid atherosclerosis score. JACC Cardiovasc. Imaging 7(4):366–373, 2014.

    Article  PubMed  Google Scholar 

  32. Yang, C., R. Bach, J. Zheng, I. El Naqa, P. K. Woodard, Z. Z. Teng, K. L. Billiar, and D. Tang. In vivo IVUS-based 3D fluid structure interaction models with cyclic bending and anisotropic vessel properties for human atherosclerotic coronary plaque mechanical analysis. IEEE Trans. Biomed. Eng. 56(10):2420–2428, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Yang, C., G. Canton, C. Yuan, M. Ferguson, T. S. Hatsukami, and D. Tang. Advanced human carotid plaque progression correlates positively with flow shear stress: an in vivo MRI multi-patient 3D FSI study. J. Biomech. 43(13):2530–2538, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Yuan, C., L. M. Mitsumori, K. W. Beach, and K. R. Maravilla. Special review: carotid atherosclerotic plaque: noninvasive MR characterization and identification of vulnerable lesions. Radiology 221:285–299, 2001.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by US NIH/NIBIB R01 EB004759. Yang’s research was supported in part by National Sciences Foundation of China 11171030.

Conflict of interest

Other than the grants listed in the acknowledgement section, the authors declare that they have no other conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalin Tang.

Additional information

Associate Editor Diego Gallo oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Wu, Z., Yang, C. et al. IVUS-Based FSI Models for Human Coronary Plaque Progression Study: Components, Correlation and Predictive Analysis. Ann Biomed Eng 43, 107–121 (2015). https://doi.org/10.1007/s10439-014-1118-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1118-1

Keywords

Navigation