Skip to main content

Advertisement

Log in

A Biophysically Based Finite-State Machine Model for Analyzing Gastric Experimental Entrainment and Pacing Recordings

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Gastrointestinal motility is coordinated by slow waves (SWs) generated by the interstitial cells of Cajal (ICC). Experimental studies have shown that SWs spontaneously activate at different intrinsic frequencies in isolated tissue, whereas in intact tissues they are entrained to a single frequency. Gastric pacing has been used in an attempt to improve motility in disorders such as gastroparesis by modulating entrainment, but the optimal methods of pacing are currently unknown. Computational models can aid in the interpretation of complex in vivo recordings and help to determine optimal pacing strategies. However, previous computational models of SW entrainment are limited to the intrinsic pacing frequency as the primary determinant of the conduction velocity, and are not able to accurately represent the effects of external stimuli and electrical anisotropies. In this paper, we present a novel computationally efficient method for modeling SW propagation through the ICC network while accounting for conductivity parameters and fiber orientations. The method successfully reproduced experimental recordings of entrainment following gastric transection and the effects of gastric pacing on SW activity. It provides a reliable new tool for investigating gastric electrophysiology in normal and diseased states, and to guide and focus future experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Beyder, A., J. L. Rae, C. Bernard, P. R. Strege, F. Sachs, and G. Farrugia. Mechanosensitivity of Nav1.5, a voltage-sensitive sodium channel. J. Physiol. 588:4969–4985, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Buist, M. L., A. Corrias, and Y. C. Poh. A model of slow wave propagation and entrainment along the stomach. Ann. Biomed. Eng. 38:3022–3030, 2010.

    Article  PubMed  Google Scholar 

  3. Buist, M. L., and Y. C. Poh. An extended bidomain framework incorporating multiple cell types. Biophys. J. 99:13–18, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Cheng, L. K., G. O’Grady, P. Du, J. U. Egbuji, J. A. Windsor, and A. J. Pullan. Gastrointestinal system. Wiley Interdiscip. Rev. Syst. Biol. Med. 2:65–79, 2010.

    Article  PubMed  Google Scholar 

  5. Corrias, A., and M. L. Buist. A quantitative model of gastric smooth muscle cellular activation. Ann. Biomed. Eng. 35:1595–1607, 2007.

    Article  PubMed  Google Scholar 

  6. Corrias, A., and M. L. Buist. Quantitative cellular description of gastric slow wave activity. Am. J. Physiol. Gastrointest. Liver Physiol. 294:G989–G995, 2008.

    Article  CAS  PubMed  Google Scholar 

  7. Cousins, H. M., F. R. Edwards, H. Hickey, C. E. Hill, and G. D. S. Hirst. Electrical coupling between the myenteric interstitial cells of Cajal and adjacent muscle layers in the guinea-pig gastric antrum. J. Physiol. 550:829–844, 2003.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Dickens, E. J., G. D. Hirst, and T. Tomita. Identification of rhythmically active cells in guinea-pig stomach. J. Physiol. 514(Pt 2):515–531, 1999.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Du, P., G. O’Grady, J. U. Egbuji, W. J. Lammers, D. Budgett, P. Nielsen, J. A. Windsor, A. J. Pullan, and L. K. Cheng. High-resolution mapping of in vivo gastrointestinal slow wave activity using flexible printed circuit board electrodes: methodology and validation. Ann. Biomed. Eng. 37:839–846, 2009.

    Article  PubMed  Google Scholar 

  10. Du, P., G. O’Grady, S. J. Gibbons, R. Yassi, R. Lees-Green, G. Farrugia, L. K. Cheng, and A. J. Pullan. Tissue-specific mathematical models of slow wave entrainment in wild-type and 5-HT(2B) knockout mice with altered interstitial cells of Cajal networks. Biophys. J. 98:1772–1781, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Du, P., G. O’Grady, J. A. Windsor, L. K. Cheng, and A. J. Pullan. A tissue framework for simulating the effects of gastric electrical stimulation and in vivo validation. IEEE Trans. Biomed. Eng. 56:2755–2761, 2009.

    Article  PubMed  Google Scholar 

  12. El-Sharkawy, T. Y., K. G. Morgan, and J. H. Szurszewski. Intracellular electrical activity of canine and human gastric smooth muscle. J. Physiol. 279:291–307, 1978.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Farrugia, G. Interstitial cells of Cajal in health and disease. Neurogastroenterol. Motil. 20(Suppl 1):54–63, 2008.

    Article  PubMed  Google Scholar 

  14. Hinder, R. A., and K. A. Kelly. Human gastric pacesetter potential. Am. J. Surg. 133:29–33, 1977.

    Article  CAS  PubMed  Google Scholar 

  15. Hirst, G. D., and F. R. Edwards. Generation of slow waves in the antral region of guinea-pig stomach—a stochastic process. J. Physiol. 535:165–180, 2001.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Imtiaz, M. S., D. W. Smith, and D. F. van Helden. A theoretical model of slow wave regulation using voltage-dependent synthesis of inositol 1,4,5-trisphosphate. Biophys. J. 83:1877–1890, 2002.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Kim, T. W., S. D. Koh, T. Ordog, S. M. Ward, and K. M. Sanders. Muscarinic regulation of pacemaker frequency in murine gastric interstitial cells of Cajal. J. Physiol. 546:415–425, 2003.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Lees-Green, R., P. Du, G. O’Grady, A. Beyder, G. Farrugia, and A. J. Pullan. Biophysically based modeling of the interstitial cells of Cajal: current status and future perspectives. Front. Physiol. 2:29, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Lin, Z. Y., R. W. McCallum, B. D. Schirmer, and J. D. Z. Chen. Effects of pacing parameters on entrainment of gastric slow waves in patients with gastroparesis. Am. J. Physiol. Gastrointest. Liver Physiol. 274:G186–G191, 1998.

    CAS  Google Scholar 

  20. McCallum, R. W., J. D. Chen, Z. Lin, B. D. Schirmer, and R. D. Williams. Gastric pacing improves emptying and symptoms in patients with gastroparesis. Gastroenterology 114:456–461, 1998.

    Article  CAS  PubMed  Google Scholar 

  21. Mirams, G. R., C. J. Arthurs, M. O. Bernabeu, R. Bordas, J. Cooper, A. Corrias, Y. Davit, S.-J. Dunn, A. G. Fletcher, D. G. Harvey, M. E. Marsh, J. M. Osborne, P. Pathmanathan, J. Pitt-Francis, J. Southern, N. Zemzemi, and D. J. Gavaghan. Chaste: an open source C++ library for computational physiology and biology. PLoS Comput. Biol. 9:e1002970, 2013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. O’Grady, G., T. R. Angeli, P. Du, C. Lahr, W. J. E. P. Lammers, J. A. Windsor, T. L. Abell, G. Farrugia, A. J. Pullan, and L. K. Cheng. Abnormal initiation and conduction of slow-wave activity in gastroparesis, defined by high-resolution electrical mapping. Gastroenterology 143(589–98):e1–e3, 2012.

    PubMed  Google Scholar 

  23. O’Grady, G., P. Du, W. J. E. P. Lammers, J. U. Egbuji, P. Mithraratne, J. D. Z. Chen, L. K. Cheng, J. A. Windsor, and A. J. Pullan. High-resolution entrainment mapping of gastric pacing: a new analytical tool. Am. J. Physiol. Gastrointest. Liver Physiol. 298:G314–G321, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  24. O’Grady, G., P. Du, N. Paskaranandavadivel, T. R. Angeli, W. J. E. P. Lammers, S. J. Asirvatham, I. A. Windor, G. Farrugia, A. J. Pullan, and L. K. Cheng. Rapid high-amplitude circumferential slow wave propagation during normal gastric pacemaking and dysrhythmias. Neurogastroenterol. Motil. 24(7):e299–e312, 2012. doi:10.1111/j.1365-2982.2012.01932.x.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Pathmanathan, P., M. O. Bernabeu, R. Bordas, J. Cooper, A. Garny, J. M. Pitt-Francis, J. P. Whiteley, and D. J. Gavaghan. A numerical guide to the solution of the bi-domain equations of cardiac electrophysiology. Prog. Biophys. Mol. Biol. 102:136–155, 2010.

    Article  PubMed  Google Scholar 

  26. Poh, Y. C., A. Beyder, P. R. Strege, G. Farrugia, and M. L. Buist. Quantification of gastrointestinal sodium channelopathy. J. Theor. Biol. 293:41–48, 2012.

    Article  CAS  PubMed  Google Scholar 

  27. Sanders, K. M., S. D. Koh, and S. M. Ward. Interstitial cells of Cajal as pacemakers in the gastrointestinal tract. Annu. Rev. Physiol. 68:307–343, 2006.

    Article  CAS  PubMed  Google Scholar 

  28. Ward, S. M., R. E. Dixon, A. de Faoite, and K. M. Sanders. Voltage-dependent calcium entry underlies propagation of slow waves in canine gastric antrum. J. Physiol. 561:793–810, 2004.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Yin, J., and J. D. Z. Chen. Implantable gastric electrical stimulation: ready for prime time? Gastroenterology 134:665–667, 2008.

    Article  PubMed  Google Scholar 

  30. Yoneda, S., H. Takano, M. Takaki, H. Suzuki, S. M. Ward, T. Ordög, J. R. Bayguinov, B. Horowitz, A. Epperson, L. Shen, H. Westphal, K. M. Sanders, and G. D. S. Hirst. Regenerative potentials evoked in circular smooth muscle of the antral region of guinea-pig stomach. J. Physiol. 517:563–573, 1999.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grants from the Riddet Institute, New Zealand, Health Research Council, New Zealand and NIH (R01 DK 64775). The authors thank Mr. Niranchan Paskaranandavadivel at the Auckland Bioengineering Institute for his suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo K. Cheng.

Additional information

Associate Editor Nathalie Virag oversaw the review of this article.

Appendices

Appendix A

Table 1 Values used for reinitializing the state variables

Appendix B

The following plots show the comparison of different ionic channel currents describing the ICC cell behaviour for FSM-CB model and ICC-CB model.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sathar, S., Trew, M.L., Du, P. et al. A Biophysically Based Finite-State Machine Model for Analyzing Gastric Experimental Entrainment and Pacing Recordings. Ann Biomed Eng 42, 858–870 (2014). https://doi.org/10.1007/s10439-013-0949-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0949-5

Keywords

Navigation