Skip to main content
Log in

A Microcontinuum Model for Mechanical Properties of Esophageal Tissue: Experimental Methodology and Constitutive Analysis

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Accurate material properties of tissues are a key factor for the improvement of medical procedures and treatments. Experimental data are essential in order to formulate and validate a useful constitutive model for predicting the mechanical behavior of tissues in these procedures. This study develops a comprehensive experimental protocol at multiple length scale levels in order to obtain stress–strain curves for esophagus tissue. This paper compares two different models: a conventional, non-linear elastic model, and a microcontinuum model based on fiber rearrangement. Also, a detailed description of the experimental procedure is provided. While the focus was on esophageal tissues, the experimental procedure and microcontinuum are considered widely applicable to other samples of soft tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Altenbach, H., and V. A. Eremeyev (eds.). Generalized Continua from the Theory to Engineering Applications (No. 541). New York: Springer, 2013.

    Google Scholar 

  2. Bass, C. R., K. Darvish, B. Bush, J. R. Crandall, S. C. M. Srinivisan, C. Tribble, S. Fisher, and L. Tourret. Material properties for modeling traumatic aortic rupture. Stapp Car Crass J. 45:143–160, 2001.

    CAS  Google Scholar 

  3. Braess, D. Finite Elements: Theory, Fast Solvers and Applications in Solid Mechanics. Cambridge: Cambridge University Press, pp. 254–255, 1998.

    Google Scholar 

  4. Cosserat, E., and F. Cosserat. Theorie des Corps Deformables. Paris: Hermann, 1909.

    Google Scholar 

  5. Deng, S. X., J. Tomioka, J. C. Debes, and Y. C. Fung. New experiments on shear modulus of elasticity of arteries. Am. J. Physiol. Heart Circ. Physiol. 266(1):H1–H10, 1994.

    CAS  Google Scholar 

  6. Dobrin, P. B., and J. M. Doyle. Vascular smooth muscle and the anisotropy of dog carotid artery. Circ. Res. 1970(27):105–119, 1970.

    Article  Google Scholar 

  7. Eberl, C., R. Thompson, D. Gianola; and Group of Kevin J. Hemker, John Hopkins University. http://www.mathworks.es/matlabcentral/fileexchange/12456-digital-image-correlation-and-tracking-example-files-and-slides, 2006.

  8. Eringen, A. C. Microcontinuum Field Theories: Volume 1, Foundations and Solids. New York: Springer, 1999. ISBN 0387986200.

    Book  Google Scholar 

  9. Eringen, A. C., and E. S. Suhubi. Non-linear theory of simple micro-elastic solids. Int. J. Eng. Sci. 2:189–203, 1964.

    Article  Google Scholar 

  10. Fan, Y., H. Gregersen, and G. Kassab. A two-layered mechanical model of the rat esophagus. Experiment and theory. Biomed. Eng. Online 3:40, 2004.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Goda, I., M. Assidi, S. Belouettar, and J. F. Ganghoffer. A micropolar constitutive model of cancellous bone from discrete homogenization. J. Mech. Behav. Biomed. Mater. 16:87–108, 2012.

    Article  CAS  PubMed  Google Scholar 

  12. Lu, X., and H. Gregersen. Regional distribution of axial strain and circumferential residual strain in the layered rabbit oesophagus. J. Biomech. 34:225–233, 2001.

    Article  CAS  PubMed  Google Scholar 

  13. Maugin, G. A., and A. Miled. Solitary Waves in Micropolar Elastic Crystals. Int. J. Eng. Sci. 9:1477–1499, 1986.

    Article  Google Scholar 

  14. Natali, A. N., E. L. Carniela, and H. Gregersen. Biomechanical behaviour of oesophageal tissues: material and structural configuration, experimental data and constitutive analysis. Med. Eng. Phys. 31:1056–1062, 2009.

    Article  PubMed  Google Scholar 

  15. Rosenberg, J., and R. Cimrman. Microcontinuum approach in biomechanical modeling. Math. Comput. Simul. 61(3):249–260, 2003.

    Article  Google Scholar 

  16. Sanchez-Molina, D., J. Velazquez-Ameijide, C. Arregui-Dalmases, J. R. Crandall, and C. D. Untaroiu. Minimization of analytical injury metrics for head impact injuries. Traffic Inj. Prev. 13(3):278–285, 2012.

    Article  CAS  PubMed  Google Scholar 

  17. Shafieian, M., K. K. Darvish, and J. R. Stone. Changes to the viscoelastic properties of brain tissue after traumatic axonal injury. J. Biomech. 42(13):2136–2142, 2009.

    Article  PubMed  Google Scholar 

  18. Stavropoulou, E. A., Y. F. Dafalias, and D. P. Sokolis. Biomechanical and histological characteristics of passive esophagus: experimental investigation and comparative constitutive modeling. J. Biomech. 42:2654–2663, 2009.

    Article  PubMed  Google Scholar 

  19. Vanagsa, I., A. Petersonsa, V. Oseb, I. Ozolantaa, V. Kasyanova, J. Laizansc, E. Vjatersa, J. Gardovskisa, and A. Vanagsa. Biomechanical properties of esophagus wall under loading. J. Biomech. 36:1387–1390, 2003.

    Article  Google Scholar 

  20. Yang, W., T. C. Fung, K. S. Chian, and C. K. Chong. Directional, regional, and layer variations of mechanical properties of esophageal tissue and its interpretation using a structure-based constitutive model. J. Biomech. 128:409–418, 2006.

    CAS  Google Scholar 

  21. Yang, W., T. C. Fung, K. S. Chian, and C. K. Chong. 3D mechanical properties of the layered esophagus: experiment and constitutive model. J. Biomech. 128:899–907, 2006.

    CAS  Google Scholar 

  22. Yang, W., T. C. Fung, K. S. Chian, and C. K. Chong. Viscoelasticity of esophageal tissue and application of a QLV model. J. Biomech. 128:909–916, 2006.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sanchez-Molina.

Additional information

Associate Editor Eiji Tanaka oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanchez-Molina, D., Velazquez-Ameijide, J., Arregui-Dalmases, C. et al. A Microcontinuum Model for Mechanical Properties of Esophageal Tissue: Experimental Methodology and Constitutive Analysis. Ann Biomed Eng 42, 62–72 (2014). https://doi.org/10.1007/s10439-013-0897-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0897-0

Keywords

Navigation