Skip to main content
Log in

Effect of Age and Exercise on the Viscoelastic Properties of Rat Tail Tendon

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Tendon mechanical properties are thought to degrade during aging but improve with exercise. A remaining question is whether exercise in aged animals provides sufficient regenerative, systemic stimulus to restore younger mechanical behaviors. Herein we address that question with tail tendons from aged and exercised rats, which would be subject to systemic effects but not direct loading from the exercise regimen. Twenty-four month old rats underwent one of three treadmill exercise training protocols for 12 months: sedentary (walking at 0° incline for 5 min/day), moderate (running at 0° incline for 30 min/day), or high (running at 4° incline for 30 min/day). A group of 9 month old rats were used to provide an adult control, while a group of 3 month old rats provided a young control. Tendons were harvested at sacrifice and mechanically tested. Results show significant age-dependent differences in modulus, ultimate stress, relaxation rate, and percent relaxation. Relaxation rate was strain-dependent, consistent with nonlinear superposition or Schapery models but not with quasilinear viscoelasticity (QLV). Trends in exercise data suggest that with exercise, tendons assume the elastic character of younger rats (lower elastic modulus and ultimate stress).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Andreassen, T. T., K. Seyer-Hansen, and A. J. Bailey. Thermal stability, mechanical properties and reducible cross-links of rat tail tendon in experimental diabetes. Biochim. Biophys. Acta 677(2):313–317, 1981.

    Article  PubMed  CAS  Google Scholar 

  2. Bailey, A. J. Molecular mechanisms of ageing in connective tissues. Mech. Ageing Dev. 122(7):735–755, 2001.

    Article  PubMed  CAS  Google Scholar 

  3. Carroll, C. C., J. M. Dickinson, J. M. Haus, G. A. Lee, C. J. Hollon, P. Aagaard, S. P. Magnusson, and T. A. Trappe. Influence of aging on the in vivo properties of human patellar tendon. J. Appl. Physiol. 105(6):1907–1915, 2008.

    Article  PubMed  CAS  Google Scholar 

  4. Chimich, D., N. Shrive, C. Frank, L. Marchuk, and R. Bray. Water content alters viscoelastic behaviour of the normal adolescent rabbit medial collateral ligament. J. Biomech. 25(8):831–837, 1992.

    Article  PubMed  CAS  Google Scholar 

  5. Chung, E., and G. M. Diffee. Moderate intensity, but not high intensity, treadmill exercise training alters power output properties in myocardium from aged rats. J. Gerontol. A Biol. Sci. Med. Sci. 2012. doi:10.1093/gerona/gls146.

    Google Scholar 

  6. Couppé, C., P. Hansen, M. Kongsgaard, V. Kovanen, C. Suetta, P. Aagaard, M. Kjær, and S. P. Magnusson. Mechanical properties and collagen cross-linking of the patellar tendon in old and young men. J. Appl. Physiol. 107(3):880–886, 2009.

    Article  PubMed  Google Scholar 

  7. Curwin, S. L., R. R. Roy, and A. C. Vailas. Regional and age variations in growing tendon. J. Morphol. 221(3):309–320, 1994.

    Article  PubMed  CAS  Google Scholar 

  8. Danielsen, C. C., and T. T. Andreassen. Mechanical properties of rat tail tendon in relation to proximal–distal sampling position and age. J. Biomech. 21(3):207–212, 1988.

    Article  PubMed  CAS  Google Scholar 

  9. Derwin, K. A., and L. J. Soslowsky. A quantitative investigation of structure–function relationships in a tendon fascicle model. J. Biomech. Eng. 121(6):598–604, 1999.

    Article  PubMed  CAS  Google Scholar 

  10. Derwin, K. A., L. J. Soslowsky, J. H. Kimura, and A. H. Plaas. Proteoglycans and glycosaminoglycan fine structure in the mouse tail tendon fascicle. J. Orthop. Res. 19(2):269–277, 2001.

    Article  PubMed  CAS  Google Scholar 

  11. Diffee, G. M., E. A. Seversen, and M. M. Titus. Exercise training increases the Ca2+ sensitivity of tension in rat cardiac myocytes. J. Appl. Physiol. 91:309–315, 2001.

    PubMed  CAS  Google Scholar 

  12. Dressler, M. R., D. L. Butler, R. Wenstrup, H. A. Awad, F. Smith, and G. P. Boivin. A potential mechanism for age-related declines in patellar tendon biomechanics. J. Orthop. Res. 20(6):1315–1322, 2002.

    Article  PubMed  CAS  Google Scholar 

  13. Duenwald, S. E., R. Vanderby, and R. S. Lakes. Viscoelastic relaxation and recovery of tendon. Ann. Biomed. Eng. 37(6):1131–1140, 2009.

    Article  PubMed  Google Scholar 

  14. Duenwald, S. E., R. Vanderby, and R. S. Lakes. Stress relaxation and recovery in tendon and ligament: experiment and modeling. Biorheology 47(1):1–14, 2010.

    PubMed  Google Scholar 

  15. Elliott, D. M., P. S. Robinson, J. A. Gimbel, J. J. Sarver, J. A. Abboud, R. V. Iozzo, and L. J. Soslowsky. Effect of altered matrix proteins on quasilinear viscoelastic properties in transgenic mouse tail tendons. Ann. Biomed. Eng. 31(5):599–605, 2003.

    Article  PubMed  Google Scholar 

  16. Fitzsimons, D. P., G. M. Diffee, R. E. Herrick, and K. M. Baldwin. Effects of endurance exercise on isomyosin patterns in fast- and slow-twitch skeletal muscles. J. Appl. Physiol. 68:1950–1955, 1990.

    PubMed  CAS  Google Scholar 

  17. Flahiff, C. M., A. T. Brooks, M. J. Hollis, L. J. Vander Shilden, and R. W. Nicholas. Biomechanical analysis of patellar tendon allografts as a function of donor age. Am. J. Sports Med. 23(3):354–358, 1995.

    Article  PubMed  CAS  Google Scholar 

  18. Galeski, A., J. Kastelic, E. Baer, and R. R. Kohn. Mechanical and structural changes in rat tail tendon induced by alloxan diabetes and aging. J. Biomech. 10:775–782, 1977.

    Article  PubMed  CAS  Google Scholar 

  19. Goh, K. L., D. F. Holmes, H. Y. Lu, S. Richardson, K. E. Kadler, P. P. Purslow, and T. J. Wess. Ageing changes in the tensile properties of tendons: influence of collagen fibril volume fraction. J. Biomech. Eng. 130:21011–21018, 2008.

    Article  CAS  Google Scholar 

  20. Haut, T. L., and R. C. Haut. The state of tissue hydration determines the strain-rate-sensitive stiffness of human patellar tendon. J. Biomech. 30(1):79–81, 1997.

    Article  PubMed  CAS  Google Scholar 

  21. Haut, R. C., R. L. Lancaster, and C. E. DeCamp. Mechanical properties of the canine patellar tendon: some correlations with age and the content of collagen. J. Biomech. 25(2):163–173, 1992.

    Article  PubMed  CAS  Google Scholar 

  22. Hingorani, R. V., P. P. Provenzano, R. S. Lakes, A. Escarcega, and R. Vanderby, Jr. Nonlinear viscoelasticity in rabbit medial collateral ligament. Ann. Biomed. Eng. 32(2):306–312, 2004.

    Article  PubMed  Google Scholar 

  23. Huang, T.-F., S. M. Perry, and L. J. Soslowsky. The effect of overuse activity on Achilles tendon in an animal model: a biomechanical study. Ann. Biomed. Eng. 32(3):336–341, 2004.

    Article  PubMed  Google Scholar 

  24. Hubbard, R. P., and R. W. Soutas-Little. Mechanical properties of human tendon and their age dependence. J. Biomech. Eng. 106:144–150, 1984.

    Article  PubMed  CAS  Google Scholar 

  25. Johnson, G. A., D. M. Tramaglini, R. E. Levine, K. Ohno, N. Y. Choi, and S. L. Woo. Tensile and viscoelastic properties of human patellar tendon. J. Orthop. Res. 12(6):796–803, 1994.

    Article  PubMed  CAS  Google Scholar 

  26. Lam, T. C., C. B. Frank, and N. G. Shrive. Changes in the cyclic and static relaxations of the rabbit medial collateral ligament complex during maturation. J. Biomech. 26:9–17, 1993.

    Article  PubMed  CAS  Google Scholar 

  27. Lavagnino, M., S. P. Arnoczky, K. Frank, and T. Tian. Collagen fibril diameter distribution does not reflect changes in the mechanical properties of in vitro stress-deprived tendons. J. Biomech. 38(1):69–75, 2005.

    Article  PubMed  Google Scholar 

  28. Legerlotz, K., P. Schjerling, H. Langberg, G. P. Brüggemann, and A. Niehoff. The effect of running, strength, and vibration strength training on the mechanical, morphological, and biochemical properties of the Achilles tendon in rats. J. Appl. Physiol. 102(2):564–572, 2007.

    Article  PubMed  CAS  Google Scholar 

  29. Millesi, H., R. Reihsner, G. Hamilton, R. Mallinger, and E. Menzel. Biomechanical properties of normal tendons, normal palmar aponeuroses, and tissues from patients with Dupuytren’s disease subjected to elastase and chondroitinase treatment. Clin. Biomech. 10(1):29–35, 1995.

    Article  Google Scholar 

  30. Nielsen, H. M., M. Skalicky, and A. Viidik. Influence of physical exercise on aging rats. III. Life-long exercise modifies the aging changes of the mechanical properties of limb muscle tendons. Mech. Ageing Dev. 100(3):243–260, 1998.

    Article  PubMed  CAS  Google Scholar 

  31. Onambele, G. L., M. V. Narici, and C. N. Maganaris. Calf muscle–tendon properties and postural balance in old age. J. Appl. Physiol. 100(6):2048–2056, 2006.

    Article  PubMed  Google Scholar 

  32. Provenzano, P., R. Lakes, T. Keenan, and R. Vanderby, Jr. Nonlinear ligament viscoelasticity. Ann. Biomed. Eng. 29(10):908–914, 2001.

    Article  PubMed  CAS  Google Scholar 

  33. Reeves, N. D., C. N. Maganaris, and M. V. Narici. Effect of strength training on human patella tendon mechanical properties of older individuals. J. Physiol. 548(3):971–981, 2003.

    Article  PubMed  CAS  Google Scholar 

  34. Robinson, P. S., T. W. Lin, P. R. Reynolds, K. A. Derwin, R. V. Iozzo, and L. J. Soslowsky. Strain-rate sensitive mechanical properties of tendon fascicles from mice with genetically engineered alterations in collagen and decorin. J. Biomech. Eng. 126(2):252–257, 2004.

    Article  PubMed  Google Scholar 

  35. Shadwick, R. E. Elastic energy storage in tendons: mechanical differences related to function and age. J. Appl. Physiol. 68:1033–1040, 1990.

    Article  PubMed  CAS  Google Scholar 

  36. Svensson, R. B., T. Hassenkam, C. A. Grant, and S. P. Magnusson. Tensile properties of human collagen fibrils and fascicles are insensitive to environmental salts. Biophys. J. 99(12):4020–4027, 2010.

    Article  PubMed  CAS  Google Scholar 

  37. Viidik, A., H. M. Nielsen, and M. Skalicky. Influence of physical exercise on aging rats: II. Life-long exercise delays aging of tail tendon collagen. Mech. Ageing Dev. 88(3):139–148, 1996.

    Article  PubMed  CAS  Google Scholar 

  38. Vogel, H. Age dependence of mechanical properties of rat tail tendons (hysteresis experiments). Aktuelle Gerontol. 13(1):22–27, 1983.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Support by the National Science Foundation (award 0553016) and National Institutes of Health (awards EB008548 and AG030423) is gratefully acknowledged. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roderic S. Lakes.

Additional information

Associate Editor Michael R. Torry oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

LaCroix, A.S., Duenwald-Kuehl, S.E., Brickson, S. et al. Effect of Age and Exercise on the Viscoelastic Properties of Rat Tail Tendon. Ann Biomed Eng 41, 1120–1128 (2013). https://doi.org/10.1007/s10439-013-0796-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0796-4

Keywords

Navigation