Skip to main content

Advertisement

Log in

Decoupling Directed and Passive Motion in Dynamic Systems: Particle Tracking Microrheology of Sputum

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Probing the physical properties of heterogeneous materials is essential to understand the structure, function and dynamics of complex fluids including cells, mucus, and polymer solutions. Particle tracking microrheology is a useful method to passively probe viscoelastic properties on micron length scales by tracking the thermal motion of beads embedded in the sample. However, errors associated with active motion have limited the implementation to dynamic systems. We present a simple method to decouple active and Brownian motion, enabling particle tracking to be applied to fluctuating heterogeneous systems. We use the movement perpendicular to the major axis of motion in time to calculate rheological properties. Through simulated data we demonstrate that this method removes directed motion and performs equally well when there is no directed motion, with an average percent error of <1%. We use this method to measure glycerol–water mixtures to show the capability to measure a range of materials. Finally, we use this technique to characterize the compliance of human sputum. We also investigate the effect of a liquefaction agent used to prepare sputum for diagnostic purposes. Our results suggest that the addition of high concentration sodium hydroxide increases sample heterogeneity by increasing the maximum observed creep compliance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Alam, M. M., and R. Mezzenga. Particle tracking microrheology of lyotropic liquid crystals. Langmuir 27:6171–6178, 2011.

    Article  PubMed  CAS  Google Scholar 

  2. Baker, E. L., R. T. Bonnecaze, and M. H. Zaman. Extracellular matrix stiffness and architecture govern intracellular rheology in cancer. Biophys. J. 97:1013–1021, 2009.

    Article  PubMed  CAS  Google Scholar 

  3. Crocker, J. C., and B. D. Hoffman. Multiple-particle tracking and two-point microrheology in cells. Methods Cell Biol. 83:141–178, 2007.

    Article  PubMed  CAS  Google Scholar 

  4. Dangaria, J. H., S. Yang, and P. J. Butler. Improved nanometer-scale particle tracking in optical microscopy using microfabricated fiduciary posts. Biotechniques 42:437–440, 2007.

    Article  PubMed  CAS  Google Scholar 

  5. Dawson, M., D. Wirtz, and J. Hanes. Enhanced viscoelasticity of human cystic fibrotic sputum correlates with increasing microheterogeneity in particle transport. J. Biol. Chem. 278:50393–50401, 2003.

    Article  PubMed  CAS  Google Scholar 

  6. Gal, N., and D. Weihs. Intracellular mechanics and activity of breast cancer cells correlate with metastatic potential. Cell Biochem. Biophys. 63:199–209, 2012.

    Article  PubMed  CAS  Google Scholar 

  7. Hasnain, I. A., and A. M. Donald. Microrheological characterization of anisotropic materials. Phys. Rev. E 73:031901, 2006.

    Article  CAS  Google Scholar 

  8. Isenberg, H. D. Essential Procedures for Clinical Microbiology. Washington: ASM Press, p. 851, 1998.

    Google Scholar 

  9. Jindal, S. K. E. Textbook of Pulmonary and Critical Care Medicine (2 Vol). London: JP Medical Ltd, p. 2296, 2011.

    Google Scholar 

  10. Kent, P. T., and Centers for Disease Control (U.S.). Public health mycobacteriology: a guide for the level III laboratory. Atlanta, GA: U.S. Dept. of Health and Human Services, Public Health Service, Centers for Disease Control, 207 pp, 1985.

  11. Lai, S. K., Y.-Y. Wang, R. Cone, D. Wirtz, and J. Hanes. Altering mucus rheology to “solidify” human mucus at the nanoscale. PLoS ONE 4:e4294, 2009.

    Article  PubMed  Google Scholar 

  12. Lai, S. K., Y.-Y. Wang, D. Wirtz, and J. Hanes. Micro- and macrorheology of mucus. Adv. Drug Deliv. Rev. 61:86–100, 2009.

    Article  PubMed  CAS  Google Scholar 

  13. Mason, T. G., K. Ganesan, J. H. van Zanten, D. Wirtz, and S. C. Kuo. Particle tracking microrheology of complex fluids. Phys. Rev. Lett. 79:3282–3285, 1997.

    Article  CAS  Google Scholar 

  14. Pelletier, V., N. Gal, P. Fournier, and M. Kilfoil. Microrheology of microtubule solutions and actin-microtubule composite networks. Phys. Rev. Lett. 102:100–103, 2009.

    Article  Google Scholar 

  15. Qian, H., M. P. Sheetz, and E. L. Elson. Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophys. J. 60:910–921, 1991.

    Article  PubMed  CAS  Google Scholar 

  16. Rogers, S. S., T. A. Waigh, and J. R. Lu. Intracellular microrheology of motile Amoeba proteus. Biophys. J. 94(8):3313–3322, 2008.

    Article  PubMed  CAS  Google Scholar 

  17. Savin, T., and P. S. Doyle. Static and dynamic errors in particle tracking microrheology. Biophys. J. 88:623–638, 2005.

    Article  PubMed  CAS  Google Scholar 

  18. Savin, T., and P. S. Doyle. Statistical and sampling issues when using multiple particle tracking. Phys. Rev. E 76:021501, 2007.

    Article  Google Scholar 

  19. Squires, T. M., and T. G. Mason. Fluid mechanics of microrheology. Annu. Rev. Fluid Mech. 42:413–438, 2010.

    Article  Google Scholar 

  20. Steingart, K. R., V. Ng, M. Henry, P. C. Hopewell, A. Ramsay, J. Cunningham, R. Urbanczik, M. D. Perkins, M. A. Aziz, and M. Pai. Sputum processing methods to improve the sensitivity of smear microscopy for tuberculosis: a systematic review. Lancet Infect. Dis. 6:664–674, 2006.

    Article  PubMed  Google Scholar 

  21. Tseng, Y., T. P. Kole, and D. Wirtz. Micromechanical mapping of live cells by multiple-particle-tracking microrheology. Biophys. J. 83:3162–3176, 2002.

    Article  PubMed  CAS  Google Scholar 

  22. Valentine, M. T., P. D. Kaplan, D. Thota, J. Crocker, T. Gisler, R. K. Prud’homme, M. Beck, and D. A. Weitz. Investigating the microenvironments of inhomogeneous soft materials with multiple particle tracking. Phys. Rev. E 64:061506, 2001.

    Article  CAS  Google Scholar 

  23. Weihs, D., M. A. Teitell, and T. G. Mason. Simulations of complex particle transport in heterogeneous active liquids. Microfluid. Nanofluid. 3:227–237, 2006.

    Article  Google Scholar 

  24. Wirtz, D. Particle-tracking microrheology of living cells: principles and applications. Annu. Rev. Biophys. 38:301–326, 2009.

    Article  PubMed  CAS  Google Scholar 

  25. DOW. Glycerine: Viscosity.

  26. Yamada, H., S. Mitarai, L. Aguiman, H. Matsumoto, and A. Fujiki. Preparation of mycobacteria-containing artificial sputum for TB panel testing and microscopy of sputum smears. Int. J. Tuberc. Lung Dis. 10:899–905, 2006.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Bela Suki for helpful comments on the manuscript. The authors thank Suchismita Paul for access to sputum samples. The research was in part was supported by funding from the Harvard University Center for AIDS Research (CFAR), an NIH funded program (P30 AI060354) to D.B.T and the United States Army Medical Research Acquisition Activity under Grant W81XWH-10-2-0161 to S.M.F and NIH grant (1 RC2 CA147925) to MHZ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad H. Zaman.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fong, E.J., Sharma, Y., Fallica, B. et al. Decoupling Directed and Passive Motion in Dynamic Systems: Particle Tracking Microrheology of Sputum. Ann Biomed Eng 41, 837–846 (2013). https://doi.org/10.1007/s10439-012-0721-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0721-2

Keywords

Navigation