Skip to main content

Advertisement

Log in

Comparisons of Planar and Tubular Biaxial Tensile Testing Protocols of the Same Porcine Coronary Arteries

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

To identify the orthotropic biomechanical behavior of arteries, researchers typically perform stretch-pressure-inflation tests on tube-form arteries or planar biaxial testing of splayed sections. We examined variations in finite element simulations (FESs) driven from planar or tubular testing of the same coronary arteries to determine what differences exist when picking one testing technique vs. another. Arteries were tested in tube-form first, then tested in planar-form, and fit to a Fung-type strain energy density function. Afterwards, arteries were modeled via finite element analysis looking at stress and displacement behavior in different scenarios (e.g., tube FESs with tube- or planar-driven constitutive models). When performing FESs of tube inflation from a planar-driven constitutive model, pressure–diameter results had an error of 12.3% compared to pressure-inflation data. Circumferential stresses were different between tube- and planar-driven pressure-inflation models by 50.4% with the planar-driven model having higher stresses. This reduced to 3.9% when rolling the sample to a tube first with planar-driven properties, then inflating with tubular-driven properties. Microstructure showed primarily axial orientation in the tubular and opening-angle configurations. There was a shift towards the circumferential direction upon flattening of 8.0°. There was also noticeable collagen uncrimping in the flattened tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. A. H. Association. Heart Disease and Stroke Statistics—2010 Update. Dallas, TX: American Heart Association, 2010.

    Google Scholar 

  2. Bund, S. J. Spontaneously hypertensive rat resistance artery structure related to myogenic and mechanical properties. Clin. Sci. (Lond.) 101(4):385–393, 2001.

    Article  CAS  Google Scholar 

  3. Carson, F. L. Histotechnology: A Self-Instructional Text (2nd ed.). Chicago: ASCP Press, 2007.

    Google Scholar 

  4. Chesler, N. C., J. Thompson-Figueroa, and K. Millburne. Measurements of mouse pulmonary artery biomechanics. J. Biomech. Eng. 126(2):309–314, 2004.

    Article  PubMed  Google Scholar 

  5. Chow, M. J., and Y. Zhang. Changes in the mechanical and biochemical properties of aortic tissue due to cold storage. J. Surg. Res. 171(2):434–442, 2011.

    Article  PubMed  CAS  Google Scholar 

  6. Chuong, C. J., and Y. C. Fung. Compressibility and constitutive equation of arterial wall in radial compression experiments. J. Biomech. 17(1):35–40, 1984.

    Article  PubMed  CAS  Google Scholar 

  7. Chuong, C. J., and Y. C. Fung. On residual stresses in arteries. J. Biomech. Eng. 108(2):189–192, 1986.

    Article  PubMed  CAS  Google Scholar 

  8. Crick, S. J., M. N. Sheppard, S. Y. Ho, L. Gebstein, and R. H. Anderson. Anatomy of the pig heart: comparisons with normal human cardiac structure. J. Anat. 193(Pt 1):105–119, 1998.

    Article  PubMed  Google Scholar 

  9. D’Amore, A., J. A. Stella, W. R. Wagner, and M. S. Sacks. Characterization of the complete fiber network topology of planar fibrous tissues and scaffolds. Biomaterials 31(20):5345–5354, 2010.

    Article  PubMed  Google Scholar 

  10. Di Martino, E. S., A. Bohra, J. P. Vande Geest, N. Gupta, M. S. Makaroun, and D. A. Vorp. Biomechanical properties of ruptured versus electively repaired abdominal aortic aneurysm wall tissue. J. Vasc. Surg. 43(3):570–576, 2006. Official publication, the Society for Vascular Surgery [and] International Society for Cardiovascular Surgery, North American Chapter; discussion 576.

  11. Dye, W. W., R. L. Gleason, E. Wilson, and J. D. Humphrey. Altered biomechanical properties of carotid arteries in two mouse models of muscular dystrophy. J. Appl. Physiol. 103(2):664–672, 2007.

    Article  PubMed  CAS  Google Scholar 

  12. Fung, Y. Biomechanics: Mechanical Properties of Living Tissues (2nd ed.). New York: Springer, 1993.

    Google Scholar 

  13. Fung, Y. C., and S. Q. Liu. Determination of the mechanical properties of the different layers of blood vessels in vivo. Proc. Natl. Acad. Sci. USA 92(6):2169–2173, 1995.

    Article  PubMed  CAS  Google Scholar 

  14. Fung, Y. C., and S. Q. Liu. Strain distribution in small blood vessels with zero-stress state taken into consideration. Am. J. Physiol. 262(2 Pt 2):H544–H552, 1992.

    PubMed  CAS  Google Scholar 

  15. Hansen, L., W. Wan, and R. L. Gleason. Microstructurally motivated constitutive modeling of mouse arteries cultured under altered axial stretch. J. Biomech. Eng. 131(10):101015, 2009.

    Article  PubMed  Google Scholar 

  16. Haskett, D., G. Johnson, A. Zhou, U. Utzinger, and J. Vande Geest. Microstructural and biomechanical alterations of the human aorta as a function of age and location. Biomech. Model Mechanobiol. 9(6):725–736, 2010.

    Article  PubMed  Google Scholar 

  17. Haskett, D., E. Speicher, M. Fouts, D. Larson, M. Azhar, U. Utzinger, and J. Vande Geest. The effects of angiotensin II on the coupled microstructural and biomechanical response of C57BL/6 mouse aorta. J. Biomech. 45(5):772–779, 2011.

    Article  PubMed  Google Scholar 

  18. Holzapfel, G. A., G. Sommer, C. T. Gasser, and P. Regitnig. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am. J. Physiol. Heart Circ. Physiol. 289(5):H2048–H2058, 2005.

    Article  PubMed  CAS  Google Scholar 

  19. Holzapfel, G. A., and H. W. Weizsacker. Biomechanical behavior of the arterial wall and its numerical characterization. Comput. Biol. Med. 28(4):377–392, 1998.

    Article  PubMed  CAS  Google Scholar 

  20. Hughes, G. C., M. J. Post, M. Simons, and B. H. Annex. Translational physiology: porcine models of human coronary artery disease: implications for preclinical trials of therapeutic angiogenesis. J. Appl. Physiol. 94(5):1689–1701, 2003.

    PubMed  Google Scholar 

  21. Humphrey, J. D., D. L. Vawter, and R. P. Vito. Quantification of strains in biaxially tested soft tissues. J. Biomech. 20(1):59–65, 1987.

    Article  PubMed  CAS  Google Scholar 

  22. John, L. C. Biomechanics of coronary artery and bypass graft disease: potential new approaches. Ann. Thorac. Surg. 87(1):331–338, 2009.

    Article  PubMed  Google Scholar 

  23. Keyes, J. T., S. M. Borowicz, J. H. Rader, U. Utzinger, M. Azhar, and J. P. Vande Geest. Design and demonstration of a microbiaxial optomechanical device for multiscale characterization of soft biological tissues with two-photon microscopy. Microsc. Microanal. 17(2):167–175, 2011.

    Article  PubMed  CAS  Google Scholar 

  24. Keyes, J. T., D. G. Haskett, U. Utzinger, M. Azhar, and J. P. Vande Geest. Adaptation of a planar microbiaxial optomechanical device for the tubular biaxial microstructural and macroscopic characterization of small vascular tissues. J. Biomech. Eng. 133(7):075001, 2011.

    Article  PubMed  Google Scholar 

  25. Kim, J., and S. Baek. Circumferential variations of mechanical behavior of the porcine thoracic aorta during the inflation test. J. Biomech. 44(10):1941–1947, 2011.

    Article  PubMed  Google Scholar 

  26. Kirkpatrick, N. D., S. Andreou, J. B. Hoying, and U. Utzinger. Live imaging of collagen remodeling during angiogenesis. Am. J. Physiol. Heart Circ. Physiol. 292(6):H3198–H3206, 2007.

    Article  PubMed  CAS  Google Scholar 

  27. Lally, C., A. J. Reid, and P. J. Prendergast. Elastic behavior of porcine coronary artery tissue under uniaxial and equibiaxial tension. Ann. Biomed. Eng. 32(10):1355–1364, 2004.

    Article  PubMed  CAS  Google Scholar 

  28. Loree, H. M., B. J. Tobias, L. J. Gibson, R. D. Kamm, D. M. Small, and R. T. Lee. Mechanical properties of model atherosclerotic lesion lipid pools. Arterioscler. Thromb. 14(2):230–234, 1994.

    Article  PubMed  CAS  Google Scholar 

  29. McVeigh, G. E., P. K. Hamilton, and D. R. Morgan. Evaluation of mechanical arterial properties: clinical, experimental and therapeutic aspects. Clin. Sci. (Lond.) 102(1):51–67, 2002.

    Article  Google Scholar 

  30. Miroslave Zemanek, J. B., and M. Detak. Biaxial tension tests with soft tissues of arterial wall. Eng. Mech. 16(1):8, 2009.

    Google Scholar 

  31. Moore, Jr., J. E. Biomechanical issues in endovascular device design. J. Endovasc. Ther. 16(Suppl 1):I1–I11, 2009.

    PubMed  Google Scholar 

  32. Peterson, S. J., and R. J. Okamoto. Effect of residual stress and heterogeneity on circumferential stress in the arterial wall. J. Biomech. Eng. 122(4):454–456, 2000.

    Article  PubMed  CAS  Google Scholar 

  33. Rachev, A., and S. E. Greenwald. Residual strains in conduit arteries. J. Biomech. 36(5):661–670, 2003.

    Article  PubMed  CAS  Google Scholar 

  34. Raghavan, M. L., S. Trivedi, A. Nagaraj, D. D. McPherson, and K. B. Chandran. Three-dimensional finite element analysis of residual stress in arteries. Ann. Biomed. Eng. 32(2):257–263, 2004.

    Article  PubMed  CAS  Google Scholar 

  35. Sato, M., K. Hayashi, H. Niimi, H. Handa, K. Moritake, and A. Okumura. Mechanical behaviors of arterial walls in the axial direction (author’s transl). Iyodenshi To Seitai Kogaku 15(6):403–409, 1977.

    PubMed  CAS  Google Scholar 

  36. Sato, M., K. Hayashi, H. Niimi, K. Moritake, A. Okumura, and H. Handa. Axial mechanical properties of arterial walls and their anisotropy. Med. Biol. Eng. Comput. 17(2):170–176, 1979.

    Article  PubMed  CAS  Google Scholar 

  37. Skwarek, M., M. Grzybiak, A. Kosinski, and J. Hreczecha. Basic axes of human heart in correlation with heart mass and right ventricular wall thickness. Folia Morphol. 65(4):385–389, 2006.

    CAS  Google Scholar 

  38. Swindle, M. M., P. J. Horneffer, T. J. Gardner, V. L. Gott, T. S. Hall, R. S. Stuart, W. A. Baumgartner, A. M. Borkon, E. Galloway, and B. A. Reitz. Anatomic and anesthetic considerations in experimental cardiopulmonary surgery in swine. Lab. Anim. Sci. 36(4):357–361, 1986.

    PubMed  CAS  Google Scholar 

  39. Vaishnav, R. N., and J. Vossoughi. Residual stress and strain in aortic segments. J. Biomech. 20(3):235–239, 1987.

    Article  PubMed  CAS  Google Scholar 

  40. Vande Geest, J. P., M. S. Sacks, and D. A. Vorp. Age dependency of the biaxial biomechanical behavior of human abdominal aorta. J. Biomech. Eng. 126(6):815–822, 2004.

    Article  Google Scholar 

  41. Vande Geest, J. P., M. S. Sacks, and D. A. Vorp. The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J. Biomech. 39(7):1324–1334, 2006.

    Article  Google Scholar 

  42. Vande Geest, J. P., M. S. Sacks, and D. A. Vorp. A planar biaxial constitutive relation for the luminal layer of intra-luminal thrombus in abdominal aortic aneurysms. J. Biomech. 39(13):2347–2354, 2006.

    Article  Google Scholar 

  43. Vossoughi, J. Longitudinal residual strain in arteries. Southern Biomedical Engineering Conference. Memphis, Tennessee; 1992:17–19.

  44. Walden, R., G. J. L’Italien, J. Megerman, and W. M. Abbott. Matched elastic properties and successful arterial grafting. Arch. Surg. 115(10):1166–1169, 1980.

    Article  PubMed  CAS  Google Scholar 

  45. Wan, W., H. Yanagisawa, and R. L. Gleason, Jr. Biomechanical and microstructural properties of common carotid arteries from fibulin-5 null mice. Ann. Biomed. Eng. 38(12):3605–3617, 2010.

    Article  PubMed  Google Scholar 

  46. Wang, R., and R. L. Gleason, Jr. A mechanical analysis of conduit arteries accounting for longitudinal residual strains. Ann. Biomed. Eng. 38(4):1377–1387, 2010.

    Article  PubMed  Google Scholar 

  47. Williams, M. J., R. A. Stewart, C. J. Low, and G. T. Wilkins. Assessment of the mechanical properties of coronary arteries using intravascular ultrasound: an in vivo study. Int. J. Card. Imaging 15(4):287–294, 1999.

    Article  PubMed  CAS  Google Scholar 

  48. Wuyts, F. L., V. J. Vanhuyse, G. J. Langewouters, W. F. Decraemer, E. R. Raman, and S. Buyle. Elastic properties of human aortas in relation to age and atherosclerosis: a structural model. Phys. Med. Biol. 40(10):1577–1597, 1995.

    Article  PubMed  CAS  Google Scholar 

  49. Zhang, W., C. Wang, and G. S. Kassab. The mathematical formulation of a generalized Hooke’s law for blood vessels. Biomaterials 28(24):3569–3578, 2007.

    Article  PubMed  CAS  Google Scholar 

  50. Zhao, J., J. Day, Z. F. Yuan, and H. Gregersen. Regional arterial stress-strain distributions referenced to the zero-stress state in the rat. Am. J. Physiol. Heart Circ. Physiol. 282(2):H622–H629, 2002.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the University of Arizona Meat Sciences Laboratory for help in sample acquisition. The Advanced Intravital Microscope was funded through a NIH/NCRR 1S10RR023737-01. This work is supported, in parts, by the National Institutes of Health Cardiovascular Biomedical Engineering Training Grant (T32 HL007955), an American Heart Association (AHA) Predoctoral Fellowship (11PRE7730024 to JTK), Achievement Rewards for College Scientists (ARCS; Mary Ann White Memorial Scholarship to JTK), an AHA Beginning Grant-in-Aid (0860058Z to JPVG), and an AHA Grant-in-Aid (10GRNT4580045 to JPVG).

Conflict of Interest

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan P. Vande Geest.

Additional information

Associate Editor Elena S. Di Martino oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keyes, J.T., Lockwood, D.R., Utzinger, U. et al. Comparisons of Planar and Tubular Biaxial Tensile Testing Protocols of the Same Porcine Coronary Arteries. Ann Biomed Eng 41, 1579–1591 (2013). https://doi.org/10.1007/s10439-012-0679-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0679-0

Keywords

Navigation