Skip to main content

Advertisement

Log in

Sensitivity of the Wolf’s and Rosenstein’s Algorithms to Evaluate Local Dynamic Stability from Small Gait Data Sets

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The Wolf’s (W-algorithm) and Rosenstein’s (R-algorithm) algorithms have been used to quantify local dynamic stability (largest Lyapunov exponent, λ 1) in gait, with prevalence of the latter one that is considered more suitable for small data sets. However, such a claim has never been investigated. To address it, the λ 1 of the Lorenz attractor was estimated using small data sets and varied delays and embedding dimensions. Overall, the λ 1 estimates from the R-algorithm got closer to the theoretical exponent than those from the W-algorithm. The W-algorithm also overestimated λ 1 while the R-algorithm underestimated it, overlooking the attractor convergences and divergences, respectively. Local dynamic stability was then examined from 1-, 2- and 3-min long gait time series of younger (YA) and older adults (OA). The OA were found more locally unstable than the YA regardless of time series length with the W-algorithm but only for the longest time series with the R-algorithm. The lack of sensitivity to capture age-related decline in local dynamic stability from shorter time series is proposed to result from a drawback of the R-algorithm that overlooks the expansion of the attractor trajectories. The W-algorithm is advocated for use when examining local dynamic stability with small gait data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Abarbanel, H. D. I., R. Brown, and J. B. Kadtke. Prediction in chaotic nonlinear systems: methods for time series with broadband Fourier spectra. Phys. Rev. A 41:1782–1807, 1990.

    Article  PubMed  Google Scholar 

  2. Bruijn, S. M., W. R. Ten Kate, G. S. Faber, O. G. Meijer, P. J. Beek, and J. H. van Dieën. Estimating dynamic gait stability using data from non-aligned inertial sensors. Ann. Biomed. Eng. 38:2588–2593, 2010.

    Article  PubMed  Google Scholar 

  3. Bruijn, S. M., J. H. van Dieën, O. G. Meijer, and P. J. Beek. Is slow walking more stable? J. Biomech. 42:1506–1512, 2009.

    Article  PubMed  Google Scholar 

  4. Bruijn, S. M., J. H. van Dieën, O. G. Meijer, and P. J. Beek. Statistical precision and sensitivity of measures of dynamic gait stability. J. Neurosci. Methods 178:327–333, 2009.

    Article  PubMed  Google Scholar 

  5. Buzzi, U. H., N. Stergiou, M. J. Kurz, P. A. Hageman, and J. Heidel. Nonlinear dynamics indicates aging affects variability during gait. Clin. Biomech. 18:435–443, 2003.

    Article  Google Scholar 

  6. Cappozzo, A., F. Catani, A. Leardini, M. G. Benedetti, and U. Della Croce. Position and orientation in space of bones during movement: experimental artefacts. Clin. Biomech. 11:90–100, 1996.

    Article  Google Scholar 

  7. Casdagli, M. Nonlinear prediction of chaotic time series. Physica D 35:335–356, 1989.

    Article  Google Scholar 

  8. Dingwell, J. B., and J. P. Cusumano. Nonlinear time series analysis of normal and pathological human walking. Chaos 10:848–863, 2000.

    Article  PubMed  Google Scholar 

  9. Dingwell, J. B., J. P. Cusumano, D. Sternad, and P. R. Cavanagh. Slower speeds in neuropathic patients lead to improved local dynamic stability of continuous overground walking. J. Biomech. 33:1269–1277, 2000.

    Article  PubMed  CAS  Google Scholar 

  10. Dingwell, J. B., J. P. Cusumano, D. Sternad, and P. R. Cavanagh. Local dynamic stability versus kinematic variability of continuous overground and treadmill walking. J. Biomech. Eng. 123:27–32, 2001.

    Article  PubMed  CAS  Google Scholar 

  11. Dingwell, J. B., and L. C. Marin. Kinematic variability and local dynamic stability of upper body motions when walking at different speeds. J. Biomech. 39:444–452, 2006.

    Article  PubMed  Google Scholar 

  12. Eckmann, J. P., S. O. Kamphorst, D. Ruelle, and S. Ciliberto. Lyapunov exponents from time series. Phys. Rev. A 34:4971–4979, 1986.

    Article  PubMed  Google Scholar 

  13. Eckmann, J. P., and D. Ruelle. Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57:617–656, 1985.

    Article  CAS  Google Scholar 

  14. Eckmann, J. P., and D. Ruelle. Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems. Physica D 56:185–187, 1992.

    Article  Google Scholar 

  15. Ellner, S., A. R. Gallant, D. McCaffrey, and D. Nychka. Convergence rates and data requirements for Jacobian-based estimates of Lyapunov exponents from data. Phys. Lett. A 153:357–363, 1991.

    Article  Google Scholar 

  16. England, S. A., and K. P. Granata. The influence of gait speed on local dynamic stability of walking. Gait Posture 25:172–178, 2007.

    Article  PubMed  Google Scholar 

  17. Fraser, A. M., and H. L. Swinney. Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33:1134–1140, 1986.

    Article  PubMed  Google Scholar 

  18. Gates, D. H., and J. B. Dingwell. Comparison of different state space definitions for local dynamic stability analyses. J. Biomech. 42:1345–1349, 2009.

    Article  PubMed  Google Scholar 

  19. Jordan, K., J. H. Challis, and K. M. Newell. Walking speed influences on gait cycle variability. Gait Posture 26:128–134, 2007.

    Article  PubMed  Google Scholar 

  20. Kang, H. G., and J. B. Dingwell. Intra-session reliability of local dynamic stability of walking. Gait Posture 24:386–390, 2006.

    Article  PubMed  Google Scholar 

  21. Kang, H. G., and J. B. Dingwell. Effects of walking speed, strength and range of motion on gait stability in healthy older adults. J. Biomech. 41:2899–2905, 2008.

    Article  PubMed  Google Scholar 

  22. Kang, H. G., and J. B. Dingwell. Dynamic stability of superior vs. inferior segments during walking in young and older adults. Gait Posture 30:260–263, 2009.

    Article  PubMed  Google Scholar 

  23. Kantz, H., and S. Schreiber. Nonlinear Time Series Analysis (2nd ed.). Cambridge, UK: Cambridge University Press, 2004.

    Google Scholar 

  24. Kennel, M. B., R. Brown, and H. D. I. Abarbanel. Determining embedding dimension for phase space-reconstruction using a geometrical construction. Phys. Rev. A 45:3403–3411, 1992.

    Article  PubMed  Google Scholar 

  25. Kyvelidou, A., M. J. Kurz, J. L. Ehlers, and N. Stergiou. Aging and partial body weight support affects gait variability. J. Neuroeng. Rehabil. 19:5–22, 2008.

    Google Scholar 

  26. Mees, A. I., and K. Judd. Dangers of geometric filtering. Physica D 68:427–436, 1993.

    Article  Google Scholar 

  27. Nigg, B. M., G. K. Cole, and W. Nachbauer. Effects of arch height of the foot on angular motion of the lower extremities in running. J. Biomech. 26:909–916, 1993.

    Article  PubMed  CAS  Google Scholar 

  28. Rosenstein, M. T., J. J. Collins, and C. J. De Luca. A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 65:117–134, 1993.

    Article  Google Scholar 

  29. Sano, M., and Y. Sawada. Measurement of the Lyapunov spectrum from a chaotic time series. Phys. Rev. Lett. 55:1082–1085, 1985.

    Article  PubMed  Google Scholar 

  30. Strogatz, S. H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. New York, NY: Addison-Wesley, 1994.

    Google Scholar 

  31. Takens, F. Detecting strange attractors in turbulence. In: Dynamical Systems and Turbulence, Warwick 1980, Vol. 898, edited by D. Rand, and L. S. Young. Berlin: Springer, 1981, pp. 366–381.

    Chapter  Google Scholar 

  32. Vaughan, C., B. Davis, and J. O’Connor. Dynamics of Human Gait. Cape Town, South Africa: Kiboho Publishers, 1999.

    Google Scholar 

  33. Wolf, A., J. B. Swift, H. L. Swinney, and J. A. Vastano. Determining Lyapunov exponents from a time series. Physica D 16:285–317, 1985.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by National Institutes of Health (1K99AG033684) and National Institute on Disability and Rehabilitation Research (H133G080023) grants. The authors thank Dr. M. J. Kurz for his technical assistance.

Conflict of interest

The authors disclose any financial and personal relationships with other people or organizations that could inappropriately influenced (bias) this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Cignetti.

Additional information

Associate Editor Catherine Disselhorst-Klug oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cignetti, F., Decker, L.M. & Stergiou, N. Sensitivity of the Wolf’s and Rosenstein’s Algorithms to Evaluate Local Dynamic Stability from Small Gait Data Sets. Ann Biomed Eng 40, 1122–1130 (2012). https://doi.org/10.1007/s10439-011-0474-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0474-3

Keywords

Navigation