Skip to main content

Advertisement

Log in

Real-Time Imaging of Perivascular Transport of Nanoparticles During Convection-Enhanced Delivery in the Rat Cortex

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Convection-enhanced delivery (CED) is a promising technique for administering large therapeutics that do not readily cross the blood brain barrier to neural tissue. It is of vital importance to understand how large drug constructs move through neural tissue during CED to optimize construct and delivery parameters so that drugs are concentrated in the targeted tissue, with minimal leakage outside the targeted zone. Experiments have shown that liposomes, viral vectors, high molecular weight tracers, and nanoparticles infused into neural tissue localize in the perivascular spaces of blood vessels within the brain parenchyma. In this work, we used two-photon excited fluorescence microscopy to monitor the real-time distribution of nanoparticles infused in the cortex of live, anesthetized rats via CED. Fluorescent nanoparticles of 24 and 100 nm nominal diameters were infused into rat cortex through microfluidic probes. We found that perivascular spaces provide a high permeability path for rapid convective transport of large nanoparticles through tissue, and that the effects of perivascular spaces on transport are more significant for larger particles that undergo hindered transport through the extracellular matrix. This suggests that the vascular topology of the target tissue volume must be considered when delivering large therapeutic constructs via CED.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Abramoff, M. D., P. J. Magelhaes, and S. J. Ram. Image processing with ImageJ. Biophoton. Int. 11:36–42, 2004.

    Google Scholar 

  2. Bezemer, J. M., D. W. Grijpma, P. J. Dijkstra, C. A. van Blitterswijk, and J. Feijen. A controlled release system for proteins based on poly(ether ester) block-copolymers: polymer network characterization. J. Control Release 62:393–405, 1999.

    Article  PubMed  CAS  Google Scholar 

  3. Bobo, R. H., D. W. Laske, A. Akbasak, P. F. Morrison, R. L. Dedrick, and E. H. Oldfield. Convection-enhanced delivery of macromolecules in the brain. Proc. Natl. Acad. Sci. USA 91:2076–2080, 1994.

    Article  PubMed  CAS  Google Scholar 

  4. Carare, R. O., M. Bernardes-Silva, T. A. Newman, A. M. Page, J. A. R. Nicoll, V. H. Perry, and R. O. Weller. Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol. Appl. Neurobiol. 34:131–144, 2008.

    Article  PubMed  CAS  Google Scholar 

  5. Cserr, H. F., and L. H. Ostrach. Bulk flow of interstitial fluid after intracranial injection of blue dextran 2000. Exp. Neurol. 45:50–60, 1974.

    Article  PubMed  CAS  Google Scholar 

  6. Cunningham, J., P. Pivirotto, J. Bringas, B. Suzuki, S. Vijay, L. Sanftner, M. Kitamura, C. Chan, and K. S. Bankiewicz. Biodistribution of adeno-associated virus type-2 in nonhuman primates after convection-enhanced delivery to brain. Mol. Ther. 16:1267–1275, 2008.

    Article  PubMed  CAS  Google Scholar 

  7. Denk, W., K. R. Delaney, D. Kleinfeld, B. Strowbridge, D. W. Tank, and R. Yuste. Anatomical and functional imaging of neurons and circuits using two photon laser scanning microscopy. J. Neurosci. Methods 54:151–162, 1994.

    Article  PubMed  CAS  Google Scholar 

  8. Denk, W., J. H. Strickler, and W. W. Webb. Two-photon laser scanning fluorescence microscopy. Science 248:73–76, 1990.

    Article  PubMed  CAS  Google Scholar 

  9. Göbel, W., B. M. Kampa, and F. Helmchen. Imaging cellular network dynamics in three dimensions using fast 3D laser scanning. Nat. Methods 4:73–79, 2007.

    Article  PubMed  Google Scholar 

  10. Gregory, T. F., M. L. Rennels, O. R. Blaumanis, and K. Fujimoto. A method for microscopic studies of cerebral angioarchitecture and vascular-parenchymal relationships, based on the demonstration of ‘paravascular’ fluid pathways in the mammalian central nervous system. J. Neurosci. Methods 14:5–14, 1985.

    Article  PubMed  CAS  Google Scholar 

  11. Hadaczek, P., Y. Yamashita, H. Mirek, L. Tamas, M. C. Bohn, C. Noble, J. W. Park, and K. Bankiewicz. The “perivascular pump” driven by arterial pulsation is a powerful mechanism for the distribution of therapeutic molecules within the brain. Mol. Ther. 14:69–78, 2006.

    Article  PubMed  CAS  Google Scholar 

  12. Hutchings, M., and R. O. Weller. Anatomical relationships of the pia mater to cerebral blood vessels in man. J. Neurosurg. 65:316–325, 1986.

    Article  PubMed  CAS  Google Scholar 

  13. Ichimura, T., P. A. Fraser, and H. F. Cserr. Distribution of extracellular tracers in perivascular spaces of the rat brain. Brain Res. 545:103–113, 1991.

    Article  PubMed  CAS  Google Scholar 

  14. Kleinfeld, D., P. P. Mitra, F. Helmchen, and W. Denk. Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proc. Natl. Acad. Sci. USA 95:15741–15746, 1998.

    Article  PubMed  CAS  Google Scholar 

  15. Krauze, M. T., R. Saito, C. Noble, J. Bringas, J. Forsayeth, T. R. McKnight, J. Park, and K. S. Bankiewicz. Effects of the perivascular space on convection-enhanced delivery of liposomes in primate putamen. Exp. Neurol. 196:104–111, 2005.

    Article  PubMed  CAS  Google Scholar 

  16. Lidar, Z., Y. Mardor, T. Jonas, R. Pfeffer, M. Faibel, D. Nass, M. Hadani, and Z. Ram. Convection-enhanced delivery of paclitaxel for the treatment of recurrent malignant glioma: a phase I/II clinical study. J. Neurosurg. 100:472–479, 2004.

    Article  PubMed  CAS  Google Scholar 

  17. Mamot, C., J. B. Nguyen, M. Pourdehnad, P. Hadaczek, R. Saito, J. R. Bringas, D. C. Drummond, K. Hong, D. B. Kirpotin, T. McKnight, M. S. Berger, J. W. Park, and K. S. Bankiewicz. Extensive distribution of liposomes in rodent brains and brain tumors following convection-enhanced delivery. J. Neurooncol. 68:1–9, 2004.

    Article  PubMed  Google Scholar 

  18. Neeves, K. B., C. T. Lo, C. P. Foley, W. M. Saltzman, and W. L. Olbricht. Fabrication and characterization of microfluidic probes for convection enhanced drug delivery. J. Control Release 111:252–262, 2006.

    Article  PubMed  CAS  Google Scholar 

  19. Neeves, K. B., A. J. Sawyer, C. P. Foley, W. M. Saltzman, and W. L. Olbricht. Dilation and degradation of the brain extracellular matrix enhances penetration of infused polymer nanoparticles. Brain Res. 1180:121–132, 2007.

    Article  PubMed  CAS  Google Scholar 

  20. Nicholson, C. Diffusion and related transport mechanisms in brain tissue. Rep. Prog. Phys. 64:815–884, 2001.

    Article  CAS  Google Scholar 

  21. Patek, P. The perivascular spaces of the mammalian brain. Anat. Rec. 88:1–24, 1944.

    Article  Google Scholar 

  22. Preston, S. D., P. V. Steart, A. Wilkinson, J. A. R. Nicoll, and R. O. Weller. Capillary and arterial cerebral amyloid angiopathy in Alzheimer’s disease: defining the perivascular route for the elimination of amyloid beta from the human brain. Neuropathol. Appl. Neurobiol. 29:106–117, 2003.

    Article  PubMed  CAS  Google Scholar 

  23. Rennels, M. L., T. F. Gregory, O. R. Blaumanis, K. Fujimoto, and P. A. Grady. Evidence for a ‘paravascular’ fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res. 326:47–63, 1985.

    Article  PubMed  CAS  Google Scholar 

  24. Saito, R., M. T. Krauze, C. O. Noble, D. C. Drummond, D. B. Kirpotin, M. S. Berger, J. W. Park, and K. S. Bankiewicz. Convection-enhanced delivery of Ls-TPT enables an effective, continuous, low-dose chemotherapy against malignant glioma xenograft model. Neuro Oncol. 8:205–214, 2006.

    Article  PubMed  CAS  Google Scholar 

  25. Schaffer, C. B., B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld. Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion. PLoS Biol. 4:e22, 2006.

    Article  PubMed  Google Scholar 

  26. Squirrell, J. M., D. L. Wokosin, J. G. White, and B. D. Bavister. Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability. Nat. Biotechnol. 17:763–767, 1999.

    Article  PubMed  CAS  Google Scholar 

  27. Stroh, M., W. R. Zipfel, R. M. Williams, W. W. Webb, and W. M. Saltzman. Diffusion of nerve growth factor in rat striatum as determined by multiphoton microscopy. Biophys. J. 85:581–588, 2003.

    Article  PubMed  CAS  Google Scholar 

  28. Svoboda, K., W. Denk, D. Kleinfeld, and D. W. Tank. In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385:161–165, 1997.

    Article  PubMed  CAS  Google Scholar 

  29. Thorne, R. G., and C. Nicholson. In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc. Natl. Acad. Sci. USA 103:5567–5572, 2006.

    Article  PubMed  CAS  Google Scholar 

  30. Wang, P., and W. L. Olbricht. Fluid mechanics in the perivascular space. J. Theor. Biol. 274:52–57, 2011.

    Article  PubMed  Google Scholar 

  31. Weed, L. The absorption of cerebrospinal fluid into the venous system. Am. J. Anat. 31:191–221, 1923.

    Article  CAS  Google Scholar 

  32. Winkler, F., Y. Kienast, M. Fuhrmann, L. V. Baumgarten, S. Burgold, G. Mitteregger, H. Kretzschmar, and J. Herms. Imaging glioma cell invasion in vivo reveals mechanisms of dissemination and peritumoral angiogenesis. Glia 57:1306–1315, 2009.

    Article  PubMed  Google Scholar 

  33. Woollam, D. H., and J. W. Millen. The perivascular spaces of the mammalian central nervous system and their relation to the perineuronal and subarachnoid spaces. J. Anat. 89:193–200, 1955.

    PubMed  CAS  Google Scholar 

  34. Zhang, E. T., C. B. Inman, and R. O. Weller. Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum. J. Anat. 170:111–123, 1990.

    PubMed  CAS  Google Scholar 

  35. Zhang, E. T., H. K. Richards, S. Kida, and R. O. Weller. Directional and compartmentalised drainage of interstitial fluid and cerebrospinal fluid from the rat brain. Acta Neuropathol. 83:233–239, 1992.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (Grant NS-045236 to WLO), the Ellison Medical Foundation (Grant AG-NS-0330-06 to CBS), and the American Heart Association (Grant 0735644T to CBS). This work was performed in part at the Cornell NanoScale Facility, a member of the National Nanotechnology Infrastructure Network, which is supported by the National Science Foundation (Grant ECS-0335765). Also, this work made use of STC shared experimental facilities supported by the National Science Foundation under Agreement No. ECS-9876771.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conor P. Foley.

Additional information

Associate Editor Daniel Elson oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10439_2011_440_MOESM1_ESM.mov

Movie of real-time images corresponding to the time-course in Fig. 2. Images were captured at a static plane 243 μm above the outlet of the microfluidic device. Movie shows perivascular transport of 24 nm nanoparticles (red) with gradual filling of the ECS (Supplementary material 1 MOV 47128 kb)

10439_2011_440_MOESM2_ESM.mov

Movie of real-time images corresponding to the time-course in Fig. 4. Movie shows perivascular transport of 24 nm nanoparticles (red) in the perivascular space of a vessel lying in the image plane 360 μm above the microfluidic probe outlet (Supplementary material 2 MOV 8619 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foley, C.P., Nishimura, N., Neeves, K.B. et al. Real-Time Imaging of Perivascular Transport of Nanoparticles During Convection-Enhanced Delivery in the Rat Cortex. Ann Biomed Eng 40, 292–303 (2012). https://doi.org/10.1007/s10439-011-0440-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0440-0

Keywords

Navigation