Skip to main content
Log in

Development and Validation of a Computational Model for Investigation of Wrist Biomechanics

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In this study, a computational model of the wrist joint complex was developed and validated for investigating the biomechanical function of the joint in clinically representative scenarios. Joint behavior and kinematics were dictated only by osteoarticular contact, ligamentous constraints, and muscle loading. Three-dimensional articular surfaces of each bone were generated from CT images, while ligaments and muscles were modeled as linear springs and constant-magnitude force vectors, respectively. Commercially available rigid body dynamics software was to both build the model and simulate joint function. Range of motion model predictions were compared to a cadaveric study analyzing the effects of scaphoid distal pole excision and triquetral excision after radioscapholunate (RSL) fusion for validation. The computational model was able to accurately predict flexion, extension, radial deviation, and ulnar deviation motions in four states: normal (intact), RSL fusion, RSL fusion with the scaphoid distal pole excised, and RSL fusion with both the scaphoid distal pole and triquetrum excised. The model was also able to calculate other parameters of interest that are not easily obtainable experimentally, such as midcarpal forces. This model and modeling approach are anticipated to have value as a predictive clinical tool including effect of injuries or anatomical variations and initial outcome of surgical procedures for patient specific planning and custom implant design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. ADAMS/Solver User’s Guide. 2006, MSC Software Corp.: USA.

  2. Benham, M. P., D. K. Wright, and R. Bibb. Modeling of soft tissue for kinematic analysis of multi-segment human body models. Biomed Sci. Instrum. 37:111–116, 2001.

    PubMed  CAS  Google Scholar 

  3. Berger, R. A. The ligaments of the wrist A current overview of anatomy with considerations of their potential functions. Hand Clin. 13:63–82, 1997.

    PubMed  CAS  Google Scholar 

  4. Berkhout, M. J., M. N. Shaw, L. J. Berglund, K. N. An, R. A. Berger, and M. J. Ritt. The effect of radioscapholunate fusion on wrist movement and the subsequent effects of distal scaphoidectomy and triquetrectomy. J. Hand Surg. Eur. 35:740–745, 2010.

    Article  CAS  Google Scholar 

  5. Carrigan, S. D., R. A. Whiteside, D. R. Pichora, and C. F. Small. Development of a three-dimensional finite element model for carpal load transmission in a static neutral posture. Ann. Biomed. Eng. 6:718–725, 2003.

    Article  Google Scholar 

  6. Cooney, W. P. The Wrist: Diagnosis and Operative Treatment. Mosby-Year Book, 1998.

  7. Fischli, S., R. Sellens, M. Beek, and D. Pichora. Simulation of extension, radial and ulnar deviation of the wrist with a rigid body spring model. J. Biomech. 42:1363–1366, 2009.

    Article  PubMed  CAS  Google Scholar 

  8. Fisk, J. P., and J. S. Wayne. Development and validation of a computational musculoskeletal model of the elbow and forearm. Ann. Biomed. Eng. 37:803–812, 2009.

    Article  PubMed  Google Scholar 

  9. Garcia-Elias, M., K. N. An, W. P. Cooney, III, R. L. Linscheid, and E. Y. Chao. Stability of the transverse carpal arch: an experimental study. J. Hand Surg. 14:277–282, 1989.

    Article  CAS  Google Scholar 

  10. Garcia-Elias, M., A. Lluch, A. Ferreres, I. Papini-Zorli, and Z. O. Rahimtoola. Treatment of radiocarpal degenerative osteoarthritis by radioscapholunate arthrodesis and distal scaphoidectomy. J. Hand Surg. Am. 30:8–15, 2005.

    Article  PubMed  Google Scholar 

  11. Gear, C. W. Simultaneous numerical solutions of differential-algebraic equations. IEEE Trans. Circ. Theory 18:89–95, 1971.

    Article  Google Scholar 

  12. Genda, E., and E. Horii. Three-dimensional rigid body spring modeling and its application to human joints. Comp. Methods Biomech. Biomed. Eng. 6:59–60, 1998.

    Google Scholar 

  13. Gonzalez, R. V., E. L. Hutchins, R. E. Barr, and L. D. Abraham. Development and evaluation of a musculoskeletal model of the elbow joint complex. J. Biomech. Eng. 118:32–40, 1996.

    Article  PubMed  CAS  Google Scholar 

  14. Herren, D. B., H. Ploeg, D. Hertig, and R. Klabunde. Modeling and finite element analysis of a new revision implant for the elbow. Clin. Orthop. Relat. Res. 420:292–297, 2004.

    Article  PubMed  Google Scholar 

  15. Hirokawa, S. Three-dimensional mathematical model analysis of the patellofemoral joint. J. Biomech. 24:659–671, 1991.

    Article  PubMed  CAS  Google Scholar 

  16. Horii, E., M. Garcia-Elias, K. An, A. Bishop, W. P. Cooney, III, and R. Linscheid. Effect on force transmission across the carpus in procedures used to treat Kienbock’s disease. J. Hand Surg. 15:393–400, 1990.

    Article  CAS  Google Scholar 

  17. Iaquinto, J. M., and J. S. Wayne. Computational model of the lower leg and foot/ankle complex: application to arch stability. J. Biomech. Eng. 132(2):021009, 2010.

    Google Scholar 

  18. Iwasaki, N., E. Genda, P. J. Barrance, A. Minami, K. Kaneda, and E. Y. Chao. Biomechanical analysis of limited intercarpal fusion for the treatment of Kienböck’s disease: a three-dimensional theoretical study. J. Orthop. Res. 16:256–263, 1998.

    Article  PubMed  CAS  Google Scholar 

  19. Kwak, S. D., L. Blankevoort, and G. A. Ateshian. A mathematical formulation for 3D quasi-static multibody models of diarthrodial joints. Comp. Methods Biomech. Biomed. Eng. 3:41–64, 2000.

    Article  Google Scholar 

  20. Lemay, M. A., and P. E. Crago. A dynamic model for simulating movements of the elbow, forearm, and wrist. J. Biomech. 29:1319–1330, 1996.

    Article  PubMed  CAS  Google Scholar 

  21. Li, G., J. Gil, A. Kanamori, and S. L. Woo. A validated three-dimensional computational model of a human knee joint. J. Biomech. Eng. 121:657–662, 1999.

    Article  PubMed  CAS  Google Scholar 

  22. Liacouras, P. C., and J. S. Wayne. Computational modeling to predict mechanical funsion of joints: application to the lower leg with simulation of two cadaver studies. J. Biomech. Eng. 129:811–817, 2007.

    Article  PubMed  Google Scholar 

  23. Manal, K., X. Lu, M. K. Nieuwenhuis, P. J. M. Helders, and T. S. Buchanan. Force transmission through the juvenile idiopathic arthritic wrist: a novel approach using a sliding rigid body spring model. J. Biomech. 35:125–133, 2002.

    Article  PubMed  Google Scholar 

  24. Mayfield, J. K. Patterns of injury to carpal ligaments. A spectrum. Clin. Orthop. Relat. Res. 187:36–42, 1984.

    PubMed  Google Scholar 

  25. Mayfield, J. K., R. P. Johnson, and R. F. Kilcoyne. The ligaments of the human wrist and their functional significance. Anat. Rec. 186:417–428, 1976.

    Article  PubMed  CAS  Google Scholar 

  26. McCombe, D., D. C. Ireland, and I. McNab. Distal scaphoid excision after radioscaphoid arthrodesis. J. Hand Surg. Am. 26:877–882, 2001.

    Article  PubMed  CAS  Google Scholar 

  27. Murray, P. M. Radioscapholunate arthrodesis. Hand Clin. 21:561–566, 2005.

    Article  PubMed  Google Scholar 

  28. Nagy, L., and U. Büchler. Long-term results of of radioscapholunate fusion following fractures of the distal radius. J. Hand Surg. Eur. 22:705–710, 1997.

    Article  CAS  Google Scholar 

  29. Nelson, D. L. Functional wrist motion. Hand Clin. 13:83–92, 1997.

    PubMed  CAS  Google Scholar 

  30. Netter, F.H. Atlas of Human Anatomy. 5th ed. Saunders, 2010.

  31. Nowalk, M. D., and S. E. Logan. Distinguishing biomechanical properties of intrinsic and extrinsic human wrist ligaments. J. Biomech. Eng. 113:85–93, 1991.

    Article  PubMed  CAS  Google Scholar 

  32. Palmer, A. K., F. W. Werner, D. Murphy, and R. Glisson. Functional wrist motion: a biomechanical study. J. Hand Surg. Am. 10:39–46, 1985.

    PubMed  CAS  Google Scholar 

  33. Pervaiz, K., W. H. Bowers, J. E. Isaacs, J. R. Owen, and J. S. Wayne. Range of motion effects of distal pole scaphoid excision and triquetral excision after radioscapholunate fusion: a cadaver study. J. Hand Surg. Am. 34:832–837, 2009.

    Article  PubMed  Google Scholar 

  34. Raikova, R. A. A general approach for modeling and mathematical investigation of the human upper limb. J. Biomech. 25:857–867, 1992.

    Article  PubMed  CAS  Google Scholar 

  35. Schuind, F., W. P. Cooney, R. L. Linscheid, K. N. An, and E. Y. Chao. Force and pressure transmission through the normal wrist. A theoretical two-dimensional study in the posterior-anterior plane. J. Biomech. 28:587–601, 1995.

    Article  PubMed  CAS  Google Scholar 

  36. Wismans, J., F. Veldpaus, J. Janssen, A. Huson, and P. Struben. A three-dimensional mathematical model of the knee-joint. J. Biomech. 13:677–685, 1980.

    Article  PubMed  CAS  Google Scholar 

  37. Wu, G., F. Vanderhelm, H. Dirkjanveeger, M. Makhsous, P. Vanroy, and C. Anglin. ISB recommendations on definitions of joint coordinate systems of various joints for the reporting of human joint motion—part II: shoulder, elbow, wrist and hand. J. Biomech. 38:981–992, 2005.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Curtis Hayes and the Department of Radiology at Virginia Commonwealth University for their assistance with the CT image captures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer S. Wayne.

Additional information

Associate Editor Eiji Tanaka oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majors, B.J., Wayne, J.S. Development and Validation of a Computational Model for Investigation of Wrist Biomechanics. Ann Biomed Eng 39, 2807–2815 (2011). https://doi.org/10.1007/s10439-011-0361-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0361-y

Keywords

Navigation