Skip to main content
Log in

Comparative Finite Element Analysis of the Debonding Process in Different Concepts of Cemented Hip Implants

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Damage accumulation in the cement mantle and debonding of the bone–cement interface are basic events that contribute to the long-term failure of cemented hip reconstructions. In this work, a numerical study with these two process coupled is presented. Previously uniform bone–cement interface mechanical properties were only considered. In this work, a new approach assuming nonuniform and random bone–cement interface mechanical properties was applied to investigate its effect on cement degradation. This methodology was also applied to simulate and compare the degradation process of the cement and bone–cement interface in three different concepts of design: Exeter, Charnley, and ABG II stems. Nonuniform and random mechanical properties of the bone–cement interface implied a simulation closer to reality. The predicted results showed that the cement deterioration and bone–cement interface debonding is different for each implant depending on the stem geometry. Lower cement deterioration was obtained for the Charnley stem and lower bone–cement interface debonding was predicted for the Exeter stem, while the highest deterioration (cement and bone–cement interface) was produced for the ABG II stem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7

Similar content being viewed by others

References

  1. Barrack, R. L., R. D. Mulroy, and W. H. Harris. Improved cementing techniques and femoral component loosening in young patients with hip arthroplasty: a 12-year radiographic review. J. Bone Joint. Surg. 74:385–389, 1992.

    CAS  Google Scholar 

  2. Bauer, T. W., and J. Schils. The pathology of total joint arthroplasty II. Mechanisms of implant failure. Skeletal Radiol. 28:483–497, 1999. doi:10.1007/s002560050552.

    Article  PubMed  CAS  Google Scholar 

  3. Bergmann, G., G. Deuretzbacher, M. Heller, F. Graichen, A. Rohlmann, J. Strauss, and G. N. Duda. Hip contact forces and gait patterns from routine activities. J. Biomech. 34:859–871, 2001. doi:10.1016/S0021-9290(01)00040-9.

    Article  PubMed  CAS  Google Scholar 

  4. Bishop, N. E., M. Schoenwald, P. Schultz, K. Püschel, and M. M. Morlock. The condition of the cement mantle in femoral hip prosthesis implantations—a post mortem retrieval study. Hip Int. 19(2):87–95, 2009.

    PubMed  Google Scholar 

  5. Chwirut, D. J. Long-term compressive creep deformation and damage in acrylic bone cements. J. Biomed. Mater. Res. 18:25–37, 1984. doi:10.1002/jbm.820180105.

    Article  PubMed  CAS  Google Scholar 

  6. Clech, J. P., L. M. Keer, and J. L. Lewis. A model of tension and compression cracks with cohesive zone at a bone–cement interface. J. Biomech. Eng. 107:175–182, 1985.

    Article  PubMed  CAS  Google Scholar 

  7. Eisler, T., O. Svensson, V. Iyer, B. Wejkner, A. Schmalholz, H. Larsson, and E. Elmstedt. Revision total hip arthroplasty using third-generation cementing technique. J. Arthroplasty 15(8):974–980, 2000. doi:10.1054/arth.2000.9825.

    Article  PubMed  CAS  Google Scholar 

  8. Franklin, J., O. Robertsson, J. Gestsson, L. S. Lohmander, and T. Ingvarsson. Revision and complication rates in 654 Exeter total hip replacements, with a maximum follow-up of 20 years. BMC Muskuloskelet. Disord. 4(1):6, 2003. doi:10.1186/1471-2474-4-6.

    Article  Google Scholar 

  9. García Araujo, C., J. Fernández González, and A. Tonino. Rheumatoid artritis and hydroxiapatite-coated hip prostheses: five-year results. International ABG Working Group. J. Arthroplasty 13(6):660–667, 1998. doi:10.1186/1471-2474-4-6.

    Article  PubMed  Google Scholar 

  10. García, J. M., M. Doblaré, and J. Cegoñino. Bone remodelling simulation: a tool for implant design. Comp. Mater. Sci. 25(1–2):100–114, 2002. doi:10.1016/S0020-1383(03)00076-7.

    Article  Google Scholar 

  11. Grasa, J., M. A. Pérez, J. M. García-Aznar, J. A. Bea, and M. Doblaré. A probabilistic damage model for acrylic cements. Application to the life prediction of cemented hip implants. Int. J. Fat. 27:891–904, 2005. doi:10.1016/j.ijfatigue.2004.12.009.

    Article  CAS  Google Scholar 

  12. Havelin, L. I., B. Espehaug, S. E. Vollset, and L. B. Engesaeter. The effect of the type of cement on early revision of Charnley total hip prostheses. A review of eight thousand five hundred and seventy-nine primary arthroplasties from the Norwegian Arthroplasty Register. J. Bone Joint Surg. Am. 77(10):1543–1550, 1995.

    PubMed  CAS  Google Scholar 

  13. Heller, M. O., G. Bergmann, G. Deuretzbacher, L. Dürselen, M. Pohl, L. Claes, N. P. Hass, and G. N. Duda. Musculo-skeletal loading conditions at the hip during walking and stair climbing. J. Biomech. 34:883–893, 2001. doi:10.1016/S0021-9290(01)00039-2.

    Article  PubMed  CAS  Google Scholar 

  14. Hernigou, P., G. Daltro, C. H. Lachaniette, X. Roussignol, M. M. Mukasa, and A. Poignard. Fixation of the cemented stem: clinical relevance of the porosity and thickness of the cement mantle. Open Orthop. J. 3:8–13, 2009. doi:10.2174/1874325000903010008.

    Article  PubMed  Google Scholar 

  15. Horne, J. G., W. Bruce, P. A. Devane, and H. H. Teoh. The effect of different cement insertion techniques on the bone–cement interface. J. Arthroplasty 17(5):579–583, 2002. doi:10.1054/arth.2002.32695.

    Article  PubMed  CAS  Google Scholar 

  16. Huiskes, R., N. Verdonschot, and B. Nivbrant. Migration, stem shape, and surface finish in cemented total hip arthroplasty. Clin. Orthop. Rel. Res. 355:103–112, 1998. doi:10.1097/00003086-199810000-00011.

    Article  Google Scholar 

  17. IGES Charnley hip stem: BiomedTown – The Biomedical Research Community, website: http://www.biomedtown.org/biomed_town/LHDL/Reception/datarepository/repositories/BelRepWikiPages/FrontPage, accessed in 2008.

  18. Jasty, M., W. J. Maloney, C. R. Bragdon, D. O. O’Connor, T. Haire, and W. H. Harris. The initiation of failure in cemented femoral components of hip arthroplasties. J. Bone Joint. Surg. 73(4):551–558, 1991.

    CAS  Google Scholar 

  19. Kim, D. G., M. A. Miller, and K. A. Mann. Creep dominates tensile fatigue damage of the cement–bone interface. J. Orthop. Res. 22:633–640, 2004. doi:10.1016/j.orthres.2003.09.007.

    Article  PubMed  CAS  Google Scholar 

  20. Kim, D. G., M. A. Miller, and K. A. Mann. A fatigue damage model for the cement–bone interface. J. Biomech. 37:1505–1512, 2004. doi:10.1016/j.jbiomech.2004.01.011.

    Article  PubMed  Google Scholar 

  21. Lemaitre, J. A continuous damage mechanics model for ductile fracture. J. Eng. Mater. Technol. 107:83–89, 1985. doi:10.1115/1.3225775.

    Article  Google Scholar 

  22. Lennon, A. B., B. A. McCormack, and P. J. Prendergast. The relationship between cement fatigue damage and implant surface finish in proximal femoral prostheses. Med. Eng. Phys. 25:833–841, 2004. doi:10.1016/S1350-4533(03)00120-6.

    Article  Google Scholar 

  23. Lennon, A. B., and P. J. Prendergast. Residual stress due to curing can initiate damage in porous bone cement: experimental and theoretical evidence. J. Biomech. 35:311–321, 2002. doi:10.1016/S0021-9290(01)00216-0.

    Article  PubMed  CAS  Google Scholar 

  24. MacDonald, W., E. Swarts, and R. Beaver. Penetration and shear strength of cement–bone interfaces in vivo. Clin. Orthop. Relat. Res. 286:283–288, 1993.

    PubMed  Google Scholar 

  25. Mann, K. A., D. C. Ayers, F. W. Werner, R. J. Nicoletta, and M. D. Fortino. Tensile strength of the cement–bone interface depends on the amount of bone interdigitated with PMMA cement. J. Biomech. 30:339–346, 1997. doi:10.1016/S0021-9290(96)00164-9.

    Article  PubMed  CAS  Google Scholar 

  26. Mann, K. A., D. L. Bartel, T. M. Wright, and A. H. Burstein. Coulomb frictional interfaces in modeling cemented total hip replacements: a more realistic model. J. Biomech. 28(9):1067–1078, 1995. doi:10.1016/0021-9290(94)00158-Z.

    Article  PubMed  CAS  Google Scholar 

  27. Mann, K. A., F. W. Werner, and D. C. Ayers. Modeling the tensile behavior of the cement–bone interface using nonlinear fracture mechanics. J. Biomech. Eng. 119:175–178, 1997. doi:10.1115/1.2796077.

    Article  PubMed  CAS  Google Scholar 

  28. Mann, K. A., and L. A. Damron. Predicting the failure response of cement–bone contructs using a non-linear fracture mechanics. J. Biomech. Eng. 124:462–470, 2002. doi:10.1115/1.1488167.

    Article  PubMed  Google Scholar 

  29. Mann, K. A., M. J. Allen, and D. C. Ayers. Pre-yield and post-yield shear behaviour of the cement–bone interface. J. Orthop. Res. 16:370–378, 1998. doi:10.1002/jor.1100160314.

    Article  PubMed  CAS  Google Scholar 

  30. Mann, K. A., R. Mocarski, L. A. Damron, M. J. Allen, and D. C. Ayers. Mixed-mode failure response of the cement–bone interface. J. Orthop. Res. 19:1153–1161, 2001. doi:10.1016/S0736-0266(01)00036-5.

    Article  PubMed  CAS  Google Scholar 

  31. Markolf, K. L., and H. C. Amstutz. In vitro measurement of bone-acrylic interface pressure during femroal components insertion. Clin. Orthop. 121:60, 1976.

    PubMed  Google Scholar 

  32. Moreo, P., M. A. Pérez, J. M. García-Aznar, and M. Doblaré. Modelling the mixed-mode failure of cement–bone interfaces. Eng. Fract. Mech. 73:1379–1395, 2006. doi:10.1016/j.engfracmech.2006.01.005.

    Article  Google Scholar 

  33. Morgan, R. L., D. F. Farrar, J. Rose, and H. Forster. Creep behaviour of bone cement: a method for time extrapolation using time-temperature equivalence. J. Mater. Sci. Mater. Med. 14:321–325, 2003. doi:10.1023/A:1022927814801.

    Article  PubMed  CAS  Google Scholar 

  34. Morlock, M., E. Schneider, A. Bluhm, M. Vollmer, G. Bergmann, V. Müller, and M. Honl. Duration and frequency of every day activities in total hip patients. J. Biomech. 34:873–881, 2001. doi:10.1016/S0021-9290(01)00035-5.

    Article  PubMed  CAS  Google Scholar 

  35. Murphy, B. P., and P. J. Prendergast. The relationship between stress, porosity, and nonlinear damage accumulation in acrylic bone cement. J. Biomed. Mater. Res. 59:646–654, 2002. doi:10.1002/jbm.10028.

    Article  PubMed  CAS  Google Scholar 

  36. Nelissen, R. G., E. H. Garling, and E. R. Valstar. Influence of cement viscosity and cement mantle thicknees on migration of the Exeter total hip prosthesis. J. Arthroplasty 20(4):521–528, 2005. doi:10.1016/j.arth.2004.09.036.

    Article  PubMed  Google Scholar 

  37. Ni, G. X., Y. S. Choy, W. W. Lu, A. H. W. Ngan, K. Y. Chiu, Z. Y. Li, B. Tang, and K. D. K. Luk. Nano-mechanics of bone and bioactive bone cement interfaces in load-bearing model. Biomaterials 27:1963–1970, 2006. doi:10.1016/j.biomaterials.2005.09.044.

    Article  PubMed  CAS  Google Scholar 

  38. Nuño, N., A. Madrala, and D. Plamondon. Measurement of transient and residual stresses during polymerization of bone cement for cemented hip implants. J. Biomech. 41(12):2605–2611, 2008. doi:10.1016/j.jbiomech.2008.06.030.

    Article  PubMed  Google Scholar 

  39. Oates, K. M., D. L. Barrera, W. N. Tucker, C. C. Chau, W. D. Bugbee, and F. R. Convery. In vivo effect of pressurization of polymethyl methacrylate bone–cement. Biomechanical and histologic analysis. J. Arthroplasty 10(3):373–381, 1995. doi:10.1016/S0883-5403(05)80188-3.

    Article  PubMed  CAS  Google Scholar 

  40. Pérez, M. A., J. Grasa, J. M. García-Aznar, J. A. Bea, and M. Doblaré. Probabilistic analysis of the influence of the bonding degree of the stem–cement interface in the performance of cemented hip prostheses. J. Biomech. 39:1859–1872, 2006. doi:10.1016/j.jbiomech.2005.05.025.

    Article  PubMed  Google Scholar 

  41. Pérez, M. A., J. M. García-Aznar, M. Doblaré, B. Seral, and F. Seral. A comparative FEA of the debonding process of cemented hip implants. Med. Eng. Phys. 28:525–533, 2005. doi:10.1016/j.medengphy.2005.09.007.

    Article  PubMed  Google Scholar 

  42. Pérez, M. A., J. M. García, and M. Doblaré. Analysis of the debonding of the stem–cement interface in intramedullary fixation using a non-linear fracture mechanics approach. Eng. Fract. Mech. 72(8):1125–1147, 2005. doi:10.1016/j.engfracmech.2004.09.002.

    Article  Google Scholar 

  43. Pérez, M. A., J. M. García-Aznar, and M. Doblaré. Does increased bone–cement interface strength have negative consequences for bulk cement integrity? A finite element study. Ann. Biomed. Eng. 37(3):454–466, 2009. doi:10.1007/s10439-008-9616-7.

    Article  PubMed  Google Scholar 

  44. Pérez, M. A., N. Nuño, A. Madrala, J. M. García-Aznar, and M. Doblaré. Computational modelling of bone cement polymerization: temperature and residual stresses. Comput. Biol. Med. 39(9):751–759, 2009. doi:10.1016/j.compbiomed.2009.06.002.

    Article  PubMed  CAS  Google Scholar 

  45. Perez, M. A., P. Fornells, M. Doblaré, and J. M. García-Aznar. Comparative analysis of bone remodelling models with respect to computerised tomography-based finite element models of bone. Comput. Methods Biomech. Biomed. Eng. 13(1):71–80, 2010. doi:10.1080/10255840903045029.

    Article  CAS  Google Scholar 

  46. Race, A., M. A. Miller, D. C. Ayers, and K. A. Mann. Early cement damage around a femoral stem is concentrated at the cement/bone interface. J. Biomech. 36:489–496, 2003. doi:10.1016/S0021-9290(02)00460-8.

    Article  PubMed  Google Scholar 

  47. Reading, A. D., A. W. McCaskie, M. R. Barnes, and P. J. Gregg. A comparison of 2 modern femoral cementing techniques. J. Arthroplasty. 15(4):479–487, 2000. doi:10.1054/arth.2000.5266.

    Article  PubMed  CAS  Google Scholar 

  48. Stolk, J., N. Verdonschot, and R. Huiskes. Stair climbing is more detrimental to the cement in hip replacement than walking. Clin. Orthop. Relat. Res. 405:294–305, 2002.

    Article  PubMed  Google Scholar 

  49. Stone, J. J., J. A. Rand, E. K. Chiu, J. J. Grabowski, and K. N. An. Cement viscosity affects the bone–cement interface in total hip arthroplasty. J. Orthop. Res. 14:834–837, 1996. doi:10.1002/jor.1100140523.

    Article  PubMed  CAS  Google Scholar 

  50. Sundfeldt, M., L. V. Carlsson, C. B. Johansson, P. Thomsen, and C. Gretzer. Aseptic loosening not only a question of wear: a review of different theories. Acta Orthop. 77(2):177–197, 2006. doi:10.180/17453670610045902.

    Article  PubMed  Google Scholar 

  51. Tong, J., K. Y. Wong, and C. Lupton. Determination of interfacial fracture toughness of bone–cement interface using sandwich Braxilian disks. Eng. Fract. Mech. 74:1904–1916, 2007. doi:10.1016/j.engfracmech.2006.02.014.

    Article  PubMed  Google Scholar 

  52. Venesmaa, P. K., H. P. Coger, J. S. Jurvelin, H. J. Miettinen, O. T. Suomalainen, and E. M. Alhava. Periprosthetic bone loss after cemented total hip arthroplasty: a prospective 5-year dual energy radiographic absorptiometry study of 15 patients. Acta Orthop. Scand. 74(1):31–36, 2003. doi:10.1080/00016470310013617.

    Article  PubMed  Google Scholar 

  53. Verdonschot, N., and R. Huiskes. Mechanical effects of stem cement interface characteristics in total hip replacement. Clin. Orthop. 329:326–336, 1996.

    Article  PubMed  Google Scholar 

  54. Verdonschot, N., and R. Huiskes. Subsidence of THA stems due to acrylic cement creep is extremely sensitive to interface friction. J. Biomech. 29(12):1569–1575, 1996. doi:10.1016/S0021-9290(96)80008-X.

    PubMed  CAS  Google Scholar 

  55. Viceconti, M., R. Muccini, M. Bernakiewicz, M. Baleani, and L. Cristofolini. Large-sliding contact elements accurately predict levels of bone-implant micromotion relevant to osseointegration. J. Biomech. 33(12):1611–1618, 1996. doi:10.1016/S0021-9290(00)00140-8.

    Article  Google Scholar 

  56. Wang, Y., P. Han, W. Gu, Z. Shi, D. Li, and C. Wang. Cement oscillation increases interlock strength at the cement–bone interface, with commentary. Orthopedics 32(5):325, 2009.

    Article  PubMed  Google Scholar 

  57. Willert, H. G., H. Bertram, and G. H. Buchhorn. Osteolysis in alloarthroplasty of the hip. The role of bone cement fragmentation. Clin. Orthop. 258:108–121, 1990.

    PubMed  Google Scholar 

  58. Zhang, H., L. T. Brown, L. A. Blunt, and S. M. Barrans. Influence of femoral stem surface finish on the apparent static shear strength at the stem–cement interface. J. Mech. Behav. Biomed. Mater. 1:96–104, 2008. doi:10.1016/j.jmbbm.2007.06.001.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the research support of the Spanish Ministry of Science and Technology through the Research Project DPI2008-02335, the Institute Salud Carlos III (CIBER-BBN), and the Aragon Regional Government through the Research Project PI031/08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Pérez.

Additional information

Associate Editor Michael S. Detamore oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez, M.A., Palacios, J. Comparative Finite Element Analysis of the Debonding Process in Different Concepts of Cemented Hip Implants. Ann Biomed Eng 38, 2093–2106 (2010). https://doi.org/10.1007/s10439-010-9996-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-9996-3

Keywords

Navigation