Skip to main content
Log in

FSI Analysis of the Coughing Mechanism in a Human Trachea

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The main physiological function of coughing is to remove from the airways the mucus and foreign particles that enter the lungs with respirable air. However, in patients with endotracheal tubes, further surgery has to be performed to improve cough effectiveness. Thus, it is necessary to analyze how this process is carried out in healthy tracheas to suggest ways to improve its efficacy in operated patients. A finite element model of a human trachea is developed and used to analyze the deformability of the tracheal walls under coughing. The geometry of the trachea is obtained from CT of a 70-year-old male patient. A fluid structure interaction approach is used to analyze the deformation of the wall when the fluid (in this case, air) flows inside the trachea. A structured hexahedral-based grid for the tracheal walls and an unstructured tetrahedral-based mesh with coincident nodes for the fluid are used to perform the simulations with the finite element-based commercial software code (ADINA R&D Inc.). Tracheal wall is modeled as an anisotropic fiber reinforced hyperelastic solid material in which the different orientation of the fibers is introduced. The implantation of an endotracheal prosthesis is simulated. Boundary conditions for breathing and coughing are applied at the inlet and at the outlet surfaces of the fluid mesh. The collapsibility of a human trachea under breathing and coughing is shown in terms of flow patterns and wall stresses. The ability of the model to reproduce the normal breathing and coughing is proved by comparing the deformed shape of the trachea with experimental results. Moreover the implantation of an endotracheal prosthesis would be related with a decrease of coughing efficiency, as clinically seen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7

Similar content being viewed by others

References

  1. Balashazy, I., T. Heistracher, and W. Hoffmann. Air flow and particle deposition patterns in bronchial airway bifurcations: the effect of different CFD models and bifurcation geometries. J. Aerosol Med. 9:287–301, 1996.

    Article  Google Scholar 

  2. Bathe, K. J., and H. Zhang. Finite element developments for general fluid flows with structural interactions, Int. J. Numer. Methods Eng. 60:213–232, 2004.

    Article  Google Scholar 

  3. Bathe, K. J., H. Zhang, and S. Ji. Finite element analysis of fluid flows fully coupled with structural interactions. Comput. Struct., 72:1–16, 1999

    Article  Google Scholar 

  4. Calay, R. K., J. Kurujareon, and A. E. Holdo. Numerical simulation of respiratory flow patterns within human lungs. Respir. Physiol. Neurobiol., 130:201–221, 2002.

    Article  CAS  PubMed  Google Scholar 

  5. Cebral J. R., and R. M. Summers. Tracheal and central bronchial aerodynamics using virtual bronchoscopy and computational fluid dynamics. IEEE Trans. Med. Imaging 23(8):1021–1033, 2004.

    Article  PubMed  Google Scholar 

  6. Costantino, M. L., P. Bagnoli, G. Dini, G. B. Fiore, M. Soncini, C. Corno, F. Acocella, and R. Colombi. A numericla and experimental study of compliance and collapsibility of preterm lamb trachea. J. Biomech., 37:1837–1847, 2004.

    Article  CAS  PubMed  Google Scholar 

  7. Cullen, A. B., P. H. Cooke, S. P. Driska, M. R. Wolfson, and T. H. Shaffer. The impact of mechanical ventilation on immature airway smooth muscle: functional, structural, histological and molecular correlates. Biol. Neonate, 90(1):17–27, 2006

    Article  PubMed  Google Scholar 

  8. Donea, J., S. Giuliani, and J. P. Halleux. An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluid-structure interaction. Comput. Methods Appl. Mech. Eng., 33:689–723, 1982.

    Article  Google Scholar 

  9. Dumon, F. A dedicated tracheobronchial stent. Chest, 97:328–332, 1990.

    Article  CAS  PubMed  Google Scholar 

  10. Forster, C. H., W. A. Wall, and E. Ramm. Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible flows. Comput. Methods Appl. Mech. Eng., 196:1278–1293, 2007.

    Article  Google Scholar 

  11. Hazel, A. L., and M. Heil. Three-dimensional airway reopening: the steady propagation of a semi-infinite bubble into a buckled elastic tube. J. Fluid Mech., 478:47–70, 2003.

    Article  Google Scholar 

  12. Heil, M. Airway closure: liquid bridges in strongly buckled elastic tubes. J. Biomech. Eng. (ASME), 121:487–493, 1999.

    Article  CAS  Google Scholar 

  13. Heil, M., and J. P. White. Airway closure: surface-tension-driven non-axisymmetric instabilities of liquid-lined elastic rings. J. Fluid Mech., 462:79–109, 2002.

    Article  Google Scholar 

  14. Holzapfel, G. A. Nonlinear Solid Mechanics. Wiley, New York, 2000

    Google Scholar 

  15. http://www.economicexpert.com/a/Cough.htm

  16. Kim, C. S., and A. J. Iglesias. Deposition of inhaled particles in bifurcating airway models: I. Inspiratory deposition. J. Aerosol Med., 2:1–14, 1989.

    Article  Google Scholar 

  17. Kim, C. S., A. J. Iglesias, and L. Garcia. Deposition of inhaled particles in bifurcating airway models: II. Expiratory deposition. J. Aerosol Med., 2:15–27, 1989.

    Article  Google Scholar 

  18. Liu, Y., R. M. C. So, and C. H. Zhang. Modeling the bifurcation flow in a human lung airway. J. Biomech., 35:465–473, 2002.

    Article  CAS  PubMed  Google Scholar 

  19. Lyubimov, G. A. The physiological function of the posterior tracheal wall. Doklady Biol. Sci., 380:421–423, 2001.

    Article  CAS  Google Scholar 

  20. Ma, B., and K. R. Lutchen. An anatomically based hybrid computational model of the human lung and its application to low frequency oscillatory mechanics. Ann. Biomed. Eng., 34(11):1691–1704, 2006.

    Article  PubMed  Google Scholar 

  21. Maksym, G. N., L. Deng, N. J. Fairbank, C. A. Lall, and S. C. Connolly. Beneficial and harmful effects of oscillatory mechanical strain on airway smooth muscle. Can. J. Physiol. Pharmacol., 83(10):913–922, 2006

    Google Scholar 

  22. McClay, J. E. Laryngeal and tracheal stents. eMedicine , 2008

  23. McCool, D. F. Global physiology and pathophysiology of cough. Chest, 129:48–53, 2006.

    Article  Google Scholar 

  24. Miller, T. L., Y. Zhu, A. R. Altman, K. Dysart, and T. H. Shaffer. Sequential alteration of tracheal mechanical properties in the neonatal lamb: effect of mechanical ventilation. Pediatr. Pulmonol., 42:141–149, 2007

    Article  PubMed  Google Scholar 

  25. Nithiarasu, P., O. Hassan, K. Morgan, N. P. Weatherill, C. Fielder, H. Whittet, P. Ebden, and K. R. Lewis. Steady flow through a realistic human upper airway geometry. Int. J. Numer. Methods Fluid, 57:631–651, 2008.

    Article  CAS  Google Scholar 

  26. Nowak, N., P. P. Kakade, and A. V. Annapragada. Computational fluid dynamics simulation of airflow and aerosol deposition in human lungs. Ann. Biomed. Eng., 31:374–390, 2003.

    Article  PubMed  Google Scholar 

  27. Oertel, H. Jr. Prandtl’s Essentials of Fluid Mechanics. New york: Springer, 2004.

    Book  Google Scholar 

  28. Rains, J. K. Mechanical Properties of Tracheal Cartilage, MSc thesis. University of British Columbia, Vancouver, 1989.

  29. Rains, J. K., J. L. Bert, C. R. Roberts, and P. D. Pare. Mechanical properties of human tracheal cartilage. J. Appl. Physiol., 72:219–225, 1992.

    CAS  PubMed  Google Scholar 

  30. Roberts, C. R., J. K. Rains, P. D. Park, D. C. Walker, B. Wiggs, and J. L. Bert. Ultrastructure and tensile properties of Human tracheal cartilage. J. Biomech., 31:81–86, 1998.

    Article  Google Scholar 

  31. Ross, B. B., R. Gramiak, and H. Rahn. Physical dynamics of the cough mechanics. J. Appl. Physiol., 8(3):264–268, 1985.

    Google Scholar 

  32. Sera, T., S. Satoh, H. Horinouchi, K. Kabayashi, and K. Tanishita. Respiratory flow in a realistic tracheostenosis model. J. Biomech. Eng., 125:461–471, 2003.

    Article  PubMed  Google Scholar 

  33. Spitzer, A. R., T. H. Shaffer, and W. W. Fox. Assisted ventilation: physiologic implications and complications. In: Fetal and Neonatal Physiology. Philadelphia: WB Saunders Company, 1992, pp. 812–894

  34. Stephens, N. L., Cardinal, R., and B. Simmons. Mechanical properties of tracheal smooth muscle: effects of temperature. Am. J. Physiol. Cell Physiol., 233:C92–C98, 1977.

    CAS  Google Scholar 

  35. Wall, W. A., and T. Rabczuk. Fluid-structure interaction in lower airways of CT-based lung geometries. Int. J. Numer. Methods Fluid 57:653–675, 2008.

    Article  Google Scholar 

  36. White, J. P., and M. Heil. Three-dimensional instabilities of liquid-lined elastic tubes: a lubrication theory model. Phys. Fluid, 17(3):031506–031506-17, 2005.

    Article  Google Scholar 

  37. Yamada, H. Mechanical properties of respiratory and digestive organs and tissues. In: Strength of Biological Materials, edited by F. Gaynor Evans. Baltimore, MD: Williams and Wilkins, 1970.

  38. Yang, X. L., Y. Liu, R. M. C. So, and J. M. Yang. The effect of inlet velocity profile on the bifurcation copd airway flow. Comput. Biol. Med., 36:181–194, 2006.

    CAS  PubMed  Google Scholar 

  39. Zhang, Z., and C. Kleinstreuer. Transient airflow structures and particle transport in a sequentially branching lung airway model. Phys. Fluid, 14:862–880, 2002.

    Article  CAS  Google Scholar 

  40. Zhang, Z., and R. Lessmann. Computer simulation of the flow field and particle deposition by diffusion in a 3-d human airway bifurcation. Aerosol Sci. Technol., 25:338–352, 1996.

    Article  Google Scholar 

  41. Zhang, H., X. Zhang, S. Ji, Y. Guo, G. Ledezma, N. Elabbasi, and H. de Coughny. Recent development of fluid-structure interaction capabilities in the Adina system. Comput. Struct., 81:1071–1085, 2003.

    Article  Google Scholar 

Download references

Acknowledgments

The support of the Instituto de Salud Carlos III through the research project PI07/90023 and the CIBER initiative is highly appreciated. The authors gratefully acknowledge the technical support of Dr. Yiguang Yan (ADINA R&D Inc.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Malvè.

Additional information

Associate Editor John H. Linehan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malvè, M., del Palomar, A.P., López-Villalobos, J.L. et al. FSI Analysis of the Coughing Mechanism in a Human Trachea. Ann Biomed Eng 38, 1556–1565 (2010). https://doi.org/10.1007/s10439-010-9951-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-9951-3

Keywords

Navigation