Skip to main content
Log in

Simulated Stand Tests and Centrifuge Training to Prevent Orthostatic Intolerance on Earth, Moon, and Mars

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

One proposed method to overcome postflight orthostatic intolerance is for astronauts to undergo inflight centrifugation. Cardiovascular responses were compared between centrifuge and gravitational conditions using a seven-compartment cardiovascular model. Vascular resistance, heart rate, and stroke volume values were adopted from literature, while compartmental volumes and compliances were derived from impedance plethysmography of subjects (n = 8) riding on a centrifuge. Three different models were developed to represent the typical male subject who completed a 10-min postflight stand test (“male finisher”), “non-finishing male” and “female” (all non-finishers). A sensitivity analysis found that both cardiac output and arterial pressure were most sensitive to total blood volume. Simulated stand tests showed that female astronauts were more susceptible to orthostatic intolerance due to lower initial blood pressure and higher pressure threshold for presyncope. Rates of blood volume loss by capillary filtration were found to be equivalent in female and male non-finishers, but four times smaller in male finishers. For equivalent times to presyncope during centrifugation as those during constant gravity, lower G forces at the level of the heart were required. Centrifuge G levels to match other cardiovascular parameters varied depending on the parameter, centrifuge arm length, and the gravity level being matched.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Blomqvist, C. G., and H. L. Stone. Cardiovascular adjustments to gravitational stress. In: Handbook of Physiology, Sect. 2, The Cardiovascular System, edited by J. T. Shepherd et al. Washington, DC: American Physiological Society, 1982, pp. 1025–1063.

  2. Broskey, J., and M. K. Sharp. Evaluation of mechanisms of postflight orthostatic intolerance with a simple cardiovascular system model. Ann. Biomed. Eng. 35(10):1800–1811, 2007.

    Article  PubMed  Google Scholar 

  3. Buckey, J. C., L. D. Lane, B. D. Levine, D. E. Watenpaugh, S. J. Wright, W. E. Moore, F. A. Gaffney, and C. G. Blomqvist. Orthostatic intolerance after spaceflight. J. Appl. Physiol. 81(1):7–18, 1996.

    PubMed  Google Scholar 

  4. Charles, J. B., M. W. Bungo, and G. W. Fortner. Cardiopulmonary function, Chap. 14. In: Space Physiology and Medicine, edited by A. E. Nicogossian, C. L. Huntoon, and S. L. Pool. Philadelphia, PA: Lea & Febiger, 1994.

  5. Charles, J. B., and C. M. Lathers. Cardiovascular adaptation to spaceflight. J. Clin. Pharmacol. 31:1010–1023, 1991.

    PubMed  CAS  Google Scholar 

  6. Evans, J. M. Background: data comes from an experiment on male subjects (n = 8) riding the NASA Ames centrifuge at various arm lengths and resulting Gz levels. Volume shifts of respective body segments were found by tracking segment impedance level against the baseline (supine, non-rotating) level allowing volume to be tracked versus Gz at the heart level. 2009 (unpublished data).

  7. Evans, J. M., F. M. Leonelli, M. G. Ziegler, C. M. McIntosh, A. R. Patwardhan, A. C. Ertl, C. S. Kim, and C. F. Knapp. Epinephrine, vasodilation and hemoconcentration in syncopal, healthy men and women. Autonom. Neurosci. 93:79–90, 2001.

    Article  CAS  Google Scholar 

  8. Fritsch-Yelle, J. M., P. A. Whitson, R. L. Bondar, and T. E. Brown. Subnormal norepinephrine release relates to presyncope in astronauts after spaceflight. J. Appl. Physiol. 81(5):2134–2141, 1996.

    PubMed  CAS  Google Scholar 

  9. Gauer, O. N., and H. L. Thron. Postural change in the circulation. In: Handbook of Physiology, Sect. 2, Circulation, Vol. 3, edited by W. F. Hamilton, and P. Dow. Washington, DC: American Physiological Society, 1965, p. 2409.

    Google Scholar 

  10. Gordon, C. C., H. M. Foti, and S. M. Donelson. U.S. Navy/Marine Corps Matched Male and Female Anthropometric Eligible Pilot Databases. Naval Air Warfare Center Aircraft Division: NAWCADPAX—96-221-TM, 1995.

  11. Pantalos, G. M., M. K. Sharp, S. J. Woodruff, S. D. O’Leary, K. J. Gillars, T. Schurfranz, S. D. Everett, M. Lemon, J. Schwartz, and T. E. Bennett. The effect of gravitational acceleration on cardiac diastolic function: a biofluid mechanical perspective with initial results. Curr. Pharm. Biotechnol. 6(4):331–341, 2005.

    Article  PubMed  CAS  Google Scholar 

  12. Perez, S. A., J. B. Charles, W. Fortner, W. Hurst, and J. V. Meck. Cardiovascular effects of anti-G suit and cooling garment during space shuttle re-entry and landing. Aviat. Space Environ. Med. 74(7):753–757, 2003.

    PubMed  Google Scholar 

  13. Peterson, K., E. T. Ozawa, G. M. Pantalos, and M. K. Sharp. Numerical simulation of the influence of gravity and posture on cardiac performance. Ann. Biomed. Eng. 30(2):247–259, 2002.

    Article  PubMed  Google Scholar 

  14. Ramsdell, C. G., T. J. Mullen, G. H. Sundby, S. Rostoft, N. Sheynberg, N. Aljuri, M. Maa, R. Mukkamala, D. Sherman, K. Toska, J. Yelle, D. Bloomfield, G. H. Williams, and R. J. Cohen. Midodrine prevents orthostatic intolerance associated with simulated spaceflight. J. Appl. Physiol. 90:2245–2248, 2001.

    PubMed  CAS  Google Scholar 

  15. Smith, J. J. (ed.). Circulatory Response to the Upright Posture. Boca Raton, FL: CRC Press, 1990.

    Google Scholar 

  16. Watenpaugh, D. E., and A. R. Hargens. The cardiovascular system in microgravity, Chap. 29. In: Handbook of Physiology-Environmental Physiology, Sect. 4, Vol. I. Bethesda, MD: American Physiological Society, 1996, pp. 631–674.

  17. Watenpaugh, D. E., D. D. O’Leary, S. M. Schneider, S. M. C. Lee, B. R. Macias, K. Tanaka, R. L. Hughson, and A. R. Hargens. Lower body negative pressure exercise plus brief post exercise lower body negative pressure improve post-bed rest orthostatic tolerance. J. Appl. Physiol. 103:1964–1972, 2007.

    Article  PubMed  Google Scholar 

  18. Waters, W. W., M. G. Ziegler, and J. V. Meck. Postspaceflight orthostatic hypotension occurs mostly in women and is predicted by low vascular resistance. J. Appl. Physiol. 92:586–594, 2002.

    PubMed  Google Scholar 

  19. Waters, W. W., S. H. Platts, B. M. Mitchell, P. A. Whitson, and J. V. Meck. Plasma volume restoration with salt tablets and water after bed rest prevents orthostatic hypotension and changes in supine hemodynamic and endocrine variables. Am. J. Physiol. Heart. Circ. Physiol. 288(2):H839–H847, 2005.

    Article  PubMed  CAS  Google Scholar 

  20. White, R. J., and C. G. Blomqvist. Central venous pressure and cardiac function during spaceflight. J. Appl. Physiol. 85(2):738–746, 1998.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

NASA Grant NNC04GA88G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Keith Sharp.

Additional information

Associate Editor Jennifer West oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coats, B.W., Keith Sharp, M. Simulated Stand Tests and Centrifuge Training to Prevent Orthostatic Intolerance on Earth, Moon, and Mars. Ann Biomed Eng 38, 1119–1131 (2010). https://doi.org/10.1007/s10439-010-9943-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-9943-3

Keywords

Navigation