Skip to main content

Advertisement

Log in

Intrinsic Mode Analysis of Human Heartbeat Time Series

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The human heartbeat interval is determined by complex nerve control and environmental inputs. As a result, the heartbeat interval for a human is a complex time series, as shown by previous studies. Most of the analysis algorithms proposed for characterizing the profile of heartbeat time series, such as detrended fluctuation analysis and multi-scale entropy, are based on various characteristics of dynamics. In this study, we present an empirical mode decomposition-based intrinsic mode analysis, which uses the appearance energy index (AEI) to quantify the property of long-term correlation, and structure index (SI) to characterize the internal modulation of data. This presented algorithm was used to investigate the human heartbeat time series downloaded from PhysioBank. We found the profiles of human heartbeat time series of subjects with congestive heart failure (CHF) or atrial fibrillation (AF) are significantly different from those of healthy subjects in internal modulation as shown by SI. Moreover, AEI is the critical characteristics for verifying subjects with CHF from subjects with AF in a degree of long-term correlation. Both AEI and SI contribute to presenting the characteristic profiles of a human heartbeat time series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Berntson, G. G., J. T. Carcioppo, and K. S. Quigley. Cardiac psychophysiology and autonomic pace in humans: empirical perspectives and conceptual implications. Psychol. Bull. 114(2):296–322, 1993.

    Article  CAS  PubMed  Google Scholar 

  2. Costa, M., A. L. Goldberger, and C.-K. Peng. Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 89(6):068102, 2002.

    Article  PubMed  CAS  Google Scholar 

  3. Craft, N., and J. B. Schwartz. Effects of age on intrinsic heart rate, heart rate variability, and AV conduction in healthy humans. Am. J. Physiol. 268:H1441–H1452, 1995.

    CAS  PubMed  Google Scholar 

  4. Databases are available at http://www.physionet.org/. See A. L. Goldberger et al., Circulation 101:E215, 2000.

    Google Scholar 

  5. Echeverria, J. C., J. A. Crowe, M. S. Woolfson, and B. R. Hayes-Gill. Application of empirical mode decomposition to heart rate variability analysis. Med. Biol. Eng. Comput. 39:471–479, 2001.

    Article  CAS  PubMed  Google Scholar 

  6. Flandrin, P., and P. Goncalves. Empirical mode decomposition as a data-driven wavelet-like expansions. Int. J. Wavelet, Multires. Info. Proc. 2(4):1–20, 2004.

    Google Scholar 

  7. Flandrin, P., P. Goncalves, and G. Rilling. EMD equivalent filter bank, from interpretation to applications. In: Hilbert–Huang Transform: Introduction and Applications, edited by N. E. Huang and S. S. P. Shen. Singapore: World Scientific, 2005, pp. 57–74.

  8. Flandrin, P., G. Rilling, and P. Goncalces. Empirical mode decomposition as a filter bank. IEEE Signal Process. Lett. 11:112–114, 2004.

    Article  Google Scholar 

  9. Goldberger, A. L., C.-K. Peng, and L. A. Lipsitz. What is physiologic complexity and how does it change with aging and disease? Neurobiol. Aging 23:23–26, 2002.

    Article  PubMed  Google Scholar 

  10. Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A 454:903–995, 1998.

    Article  Google Scholar 

  11. Hurst, H. E. Long-term storage capacity of reservoirs. Trans. Am. Soc. Civ. Eng. 116:770, 1951.

    Google Scholar 

  12. Lasko, T. A., J. G. Bhagwat, K. H. Zou, and O. M. Lucila. The use of receiver operating characteristic curves in biomedical informatics. J. Biomed. Inform. 38:404–415, 2005.

    Article  PubMed  Google Scholar 

  13. Mandelbrot, B. B., and J. W. van Ness. Fractional Brownian motions, fractal noises and applications. SIAM Rev. 10:422–437, 1968.

    Article  Google Scholar 

  14. Peng, C. K., S. Havlin, H. E. Stanley, and A. L. Goldberger. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5:82–87, 1995.

    Article  CAS  PubMed  Google Scholar 

  15. Peng, C. K., J. Mietus, J. M. Maudorff, S. Havlin, H. E. Stanley, and A. L. Goldberger. Long-range anticorrelations and non-Gaussian behavior of the heartbeat. Phys. Rev. Lett. 70:1343–1346, 1993.

    Article  Google Scholar 

  16. Pincus, S. M. Assessing serial irregularity and its implications for health. Ann. N. Y. Acad. Sci. 954:245–267, 2006.

    Article  Google Scholar 

  17. Porta, A., S. Guzzetti, N. Montano, R. Furlan, M. Pagani, A. Malliani, and S. Cerutti. Entropy, entropy rate, and pattern classification as tools to typify complexity in short heart period variability series. IEEE Trans. Biomed. Eng. 48:1282–1291, 2001.

    Article  CAS  PubMed  Google Scholar 

  18. Richman, J. S., and J. R. Moorman. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. 278:H2039–H2049, 2000.

    CAS  Google Scholar 

  19. Task Force European Society of Cardiology and North American Society of Pacing Electrophysiology. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 17:354–381, 1996.

    Google Scholar 

  20. Wood, A. T., and G. Chan. Simulation of stationary processes in [0, 1]d. J. Comput. Graph. Stat. 3:409–432, 1994.

    Article  Google Scholar 

  21. Wu, Z. H., and N. E. Huang. A study of the characteristics of white noise using the empirical mode decomposition method. Proc. R. Soc. Lond. A 460:1597–1611, 2004.

    Article  Google Scholar 

  22. Yang, A. C. C., S. S. Hseu, H. W. Yien, A. L. Goldberger, and C. K. Peng. Linguistic analysis of the human heartbeat using frequency and rank order statistics. Phys. Rev. Lett. 90(10):108103, 2003.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Prof. Ary L. Goldberger and Dr. C. K. Peng (the director and co-director of the Rey Institute for Nonlinear Dynamics in Medicine at the Beth Israel Deaconess Medical Center of Harvard Medical School) for valuable discussions. We gratefully acknowledge the support from National Science Council (NSC) of Taiwan (Grant number NSC96-2221-E-155-015-MY3-2) for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiann-Shing Shieh.

Additional information

Associate Editor Berj L. Bardakjian oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeh, JR., Sun, WZ., Shieh, JS. et al. Intrinsic Mode Analysis of Human Heartbeat Time Series. Ann Biomed Eng 38, 1337–1344 (2010). https://doi.org/10.1007/s10439-010-9939-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-9939-z

Keywords

Navigation