Skip to main content
Log in

Analysis of Morphology of Platelet Aggregates Formed on Collagen Under Laminar Blood Flow

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In a focal injury model, platelets adhere and activate under flow on a collagen-coated surface, creating a field of individual platelet aggregates. These aggregates exhibit distinct structural characteristics that are linked to the local flow conditions. By combining image analysis techniques and epifluorescence microscopy, we developed a robust strategy for quantifying the characteristic instantaneous width and length of a growing platelet deposit. We have confirmed the technique using model images consisting of ellipsoid objects and quantified the shear rate-dependent nature of aggregate morphology. Venous wall shear rate conditions (100 s−1) generated small, circular platelet deposits, whereas elevated arterial shear rates (500 and 1000 s−1) generated platelet masses elongated twofold in the direction of flow. At 2000 s−1, an important regime for von Willebrand Factor (vWF)-mediated recruitment, we observed sporadic platelet capture events on collagen that led to rapidly growing deposits. Furthermore, inter-donor differences were investigated with respect to aggregate growth rate. After perfusion at elevated shear rates (1000 s−1) for 5 min, we identified a twofold increase in aggregate size (81.5 ± 24.6 μm; p < 0.1) and a threefold increase in growth rate parallel to the flow (0.40 ± 0.09 μm/s; p < 0.01) for an individual donor. Suspecting a role for vWF, we found that this donor had a twofold increase in soluble vWF relative to the other donors and pooled plasma. Microfluidic devices in combination with automated morphology analysis offer new tools for characterizing clot development under flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5

Similar content being viewed by others

References

  1. Duffy, D. C., J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70:4974–4984, 1998.

    Article  CAS  Google Scholar 

  2. Folie, B. J., and L. V. McIntire. Mathematical analysis of mural thrombogenesis. Biophys. J. 56:1121–1141, 1989.

    Article  CAS  PubMed  Google Scholar 

  3. Gill, J. C., J. Endres-Brooks, P. J. Bauer, W. J. Marks, Jr., and R. R. Montgomery. The effect of ABO blood group on the diagnosis of von Willebrand disease. Blood 69:1691–1695, 1987.

    CAS  PubMed  Google Scholar 

  4. Goldsmith, H. L., and V. T. Turitto. Rheological aspects of thrombosis and haemostasis: basic principles and applications. Thromb. Haemost. 55:415–435, 1986.

    CAS  PubMed  Google Scholar 

  5. Hubbell, J. A., and L. V. McIntire. Technique for visualization and analysis of mural thrombogenesis. Rev. Sci. Instrum. 57:892–897, 1986.

    Article  Google Scholar 

  6. Hubbell, J. A., and L. V. McIntire. Visualization and analysis of mural thrombogenesis on collagen, polyurethane, and nylon. Biomaterials 7:354–363, 1986.

    Article  CAS  PubMed  Google Scholar 

  7. Hubbell, J. A., and L. V. McIntire. Platelet active concentration profiles near growing aggregates. Biophys. J. 50:937–945, 1986.

    Article  CAS  PubMed  Google Scholar 

  8. Jackson, S. P., W. S. Nesbitt, and S. Kulkarni. Signaling events underlying aggregate formation. Thromb. Haemost. 1:1602–1612, 2003.

    Article  CAS  Google Scholar 

  9. Kroll, M. H., J. D. Hellums, L. V. McIntire, A. I. Schafer, and J. L. Moake. Platelets and shear stress. Blood 88:1525–1541, 1996.

    CAS  PubMed  Google Scholar 

  10. Kulkarni, S., S. M. Dopheide, C. L. Yap, C. Ravanat, M. Freund, P. Mangin, K. A. Heel, A. Street, I. S. Harper, F. Lanza, and S. P. Jackson. A revised model of platelet aggregation. J. Clin. Invest. 105:783–791, 2000.

    Article  CAS  PubMed  Google Scholar 

  11. Matsui, H., M. Sugimoto, S. Tsuji, S. Miyata, M. Matsuda, and A. Yoshioka. Distinct and concerted functions of von Willebrand factor and fibrinogen in mural aggregate growth under high shear flow. Blood 100:3604–3610, 2002.

    Article  CAS  PubMed  Google Scholar 

  12. Moake, J. L., N. A. Turner, N. A. Stathopoulos, L. Nolasco, and J. D. Hellums. Shear-induced platelet aggregation can be mediated by vWF released from platelets, as well as by exogenous large or unusually large vWF multimers, requires adenosine diphosphate, and is resistant to aspirin. Blood 71:1366–1374, 1988.

    CAS  PubMed  Google Scholar 

  13. Neeves, K. B., and S. L. Diamond. A membrane-based microfluidic device for controlling the flux of platelet agonists into flowing blood. Lab Chip 8:701–709, 2008.

    Article  CAS  PubMed  Google Scholar 

  14. Neeves, K. B., S. F. Maloney, K. P. Fong, A. A. Schmaier, M. L. Kahn, L. F. Brass, and S. L. Diamond. Microfluidic focal thrombosis model for measuring murine platelet deposition and stability: PAR4 signaling enhances shear-resistance of platelet aggregates. Thromb. Haemost. 6:2193–2201, 2008.

    Article  CAS  Google Scholar 

  15. O’Donnell, J., and M. A. Laffan. The relationship between ABO histo-blood group, factor VIII and von Willebrand factor. Transfus. Med. 11:343–351, 2001.

    Article  PubMed  Google Scholar 

  16. Ruggeri, Z. M. The role of von Willebrand factor in aggregate formation. Thromb. Res. 120:S5–S9, 2007.

    Article  CAS  PubMed  Google Scholar 

  17. Ruggeri, Z. M., J. A. Dent, and E. Saldivar. Contribution of distinct adhesive interactions to platelet adhesion under flow. Blood 94:172–178, 1999.

    CAS  PubMed  Google Scholar 

  18. Savage, B., M. H. Ginsberg, and Z. M. Ruggeri. Influence of fibrillar collagen structure on the mechanisms of platelet aggregate formation under flow. Blood 94:2704–2715, 1999.

    CAS  PubMed  Google Scholar 

  19. Savage, B., S. J. Shattil, and Z. M. Ruggeri. Modulation of platelet function through adhesion receptors. Circulation 86:11300–11306, 1992.

    Google Scholar 

  20. Shankaran, H., P. Alexandridis, and S. Neelamegham. Aspects of hydrodynamic shear regulating shear-induced platelet activation and self-association of von Willebrand factor in suspension. Blood 101:2637–2645, 2003.

    Article  CAS  PubMed  Google Scholar 

  21. Shattil, S. J., and P. J. Newman. Integrins: dynamic scaffolds for adhesion and signaling in platelets. Blood 104:1606–1615, 2004.

    Article  CAS  PubMed  Google Scholar 

  22. Skipwith, C. G., W. Cao, and X. L. Zheng. Factor VIII and platelets synergistically accelerate cleavage of von Willebrand factor by ADAMTS13 under fluid shear stress. J. Biol. Chem. 285:28596–28603, 2010.

    Article  CAS  PubMed  Google Scholar 

  23. Sokal, R. R. Spatial autocorrelation in biology. Biol. J. Linn. Soc. 10:199–228, 1978.

    Article  Google Scholar 

  24. Sternberg, S. R. Biomedical image processing. Computer 16:22–34, 1983.

    Article  Google Scholar 

  25. Tsuji, S., M. Sugimoto, S. Miyata, M. Kuwahara, S. Kinoshita, and A. Yoshioka. Real-time analysis of mural aggregates formation in various platelet aggregation disorders: distinct shear-dependent roles of platelet receptors and adhesive proteins under flow. Blood 94:968–975, 1999.

    CAS  PubMed  Google Scholar 

  26. Yoo, J. C., and T. H. Han. Fast normalized cross-correlation. Circ. Syst. Signal Process. 28:819–843, 2009.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Diamond.

Additional information

Associate Editor Konstantinos Konstantopoulos oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colace, T., Falls, E., Zheng, X.L. et al. Analysis of Morphology of Platelet Aggregates Formed on Collagen Under Laminar Blood Flow. Ann Biomed Eng 39, 922–929 (2011). https://doi.org/10.1007/s10439-010-0182-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0182-4

Keywords

Navigation