Skip to main content

Advertisement

Log in

A Nonlinear Model of Newborn EEG with Nonstationary Inputs

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Newborn EEG is a complex multiple channel signal that displays nonstationary and nonlinear characteristics. Recent studies have focussed on characterizing the manifestation of seizure on the EEG for the purpose of automated seizure detection. This paper describes a novel model of newborn EEG that can be used to improve seizure detection algorithms. The new model is based on a nonlinear dynamic system; the Duffing oscillator. The Duffing oscillator is driven by a nonstationary impulse train to simulate newborn EEG seizure and white Gaussian noise to simulate newborn EEG background. The use of a nonlinear dynamic system reduces the number of parameters required in the model and produces more realistic, life-like EEG compared with existing models. This model was shown to account for 54% of the linear variation in the time domain, for seizure, and 85% of the linear variation in the frequency domain, for background. This constitutes an improvement in combined performance of 6%, with a reduction from 48 to 4 model parameters, compared to an optimized implementation of the best performing existing model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Aarabi A., R. Grebe, and F. Wallois. A multistage knowledge-based system for EEG seizure detection in newborn infants. Clin. Neurophysiol. 118:2781–2797, 2007.

    Article  PubMed  Google Scholar 

  2. Aminoff, M. J. Electrodiagnosis in Clinical Neurology. New York: Churchill Livingstone, 1992.

    Google Scholar 

  3. Boashash, B., E. J. Powers, and A. M. Zoubir. Higher Order Statistical Signal Processing. Melbourne: Longman Australia, 1995.

    Google Scholar 

  4. Budgor, A. B., K. Lindenberg, and K. E. Shuler. Studies in nonlinear stochastic processes. II. The Duffing oscillator revisited. J. Stat. Phys. 15:375–391, 1976.

    Article  Google Scholar 

  5. Celka, P., B. Boashash, and P. Colditz. Preprocessing and time–frequency analysis of newborn EEG seizures. IEEE Eng. Med. Biol. 20:30–39, 2001.

    Article  CAS  Google Scholar 

  6. Celka, P., and P. Colditz. Nonlinear nonstationary Wiener model of infant EEG seizures. IEEE Trans. Biomed. Eng. 49:556–564, 2002.

    Article  CAS  Google Scholar 

  7. Celka, P., and P. Colditz. A computer-aided detection of EEG seizures in infants: a singular spectrum approach and performance comparison. IEEE Trans. Biomed. Eng. 49:455–462, 2002.

    Article  Google Scholar 

  8. Conover, W. J. Practical Nonparametric Statistics, 3rd edn. New York: Wiley, 1999.

    Google Scholar 

  9. Deburchgraeve, W., P. J. Cherian, M. De Vos, R. M. Swarte, J. H. Blok, G. H. Visser, P. Govaert, and S. Van Huffel. Automated neonatal seizure detection mimicking a human observer reading EEG. Clin. Neurophysiol. 119:2447–2454, 2008.

    Article  CAS  PubMed  Google Scholar 

  10. Deburchgraeve, W., P. J. Cherian, M. De Vos, R. M. Swarte, J. H. Blok, G. H. Visser, P. Govaert, and S. Van Huffel. Neonatal seizure localization using PARAFAC decomposition. Clin. Neurophysiol. 120:1787–1796, 2009.

    Article  CAS  PubMed  Google Scholar 

  11. Faul, S., G. Gregorčič, G. Boylan, W. Marnane, G. Lightbody, and S. Connolly. Gaussian process modelling of EEG for the detection of neonatal seizures. IEEE Trans. Biomed. Eng. 54:2151–2162, 2007.

    Article  PubMed  Google Scholar 

  12. Greene, B. R., S. Faul, W. P. Marnane, G. Lightbody, I. Korotchikova, and G. B. Boylan. A comparison of quantitative EEG features for neonatal seizure detection. Clin. Neurophysiol. 119:1248–1261, 2008

    Article  CAS  PubMed  Google Scholar 

  13. Higuchi, T. Approach to an irregular time series on the basis of fractal theory. Phys. D 31:277–283, 1988.

    Article  Google Scholar 

  14. Korotchikova, I., S. Connolly, C. A. Ryan, D. M. Murray, A. Temko, B. R. Greene, and G. B. Boylan. EEG in the healthy term newborn within 12 hours of birth. Clin. Neurophysiol. 120:1046–1053, 2009.

    Article  CAS  PubMed  Google Scholar 

  15. Lopes da Silva, F. H., A. Hoeks, H. Smits, and L. H. Zetterberg. Model of brain rhythmic activity: the alpha-rhythm of the thalamus. Kybernetik 15:27–37, 1974.

    Article  CAS  Google Scholar 

  16. Mizrahi, E., and P. Kellaway. Diagnosis and Management of Neonatal Seizure. Philadelphia: Lippincott-Raven, 1998.

    Google Scholar 

  17. Mizrahi, E. M., R. A. Hrachovy, and P. Kellaway. Atlas of Neonatal Electroencephalography, 3rd edn. Philadelphia: Lippincott, Williams and Wilkins, 2004.

    Google Scholar 

  18. Murray, D. M., G. B. Boylan, C. A. Ryan, and S. Connolly. Early EEG findings in hypoxic–ischaemic encephalopathy predict outcomes at 2 years. Pediatrics 124:e459–e467, 2009.

    Article  PubMed  Google Scholar 

  19. Navakatikyan, M. A., P. B. Colditz, C. J. Burke, T. E. Inder, J. Richmond, and C. E. Williams. Seizure detection algorithm for neonates based on wave-sequence analysis. Clin. Neurophysiol. 117:1190–1203, 2006.

    Article  PubMed  Google Scholar 

  20. Niedermeyer, E., and F. H. Lopes da Silva. Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 5th edn. Philadelphia: Lippincott, Williams and Wilkins, 2004.

    Google Scholar 

  21. Notley, S. W. and S. J. Elliott. Efficient estimation of a time-varying dimension parameter and its application to EEG analysis. IEEE Trans. Biomed. Eng. 50:594–602, 2003.

    Article  Google Scholar 

  22. Oppenheim, A. V., R. W. Schafer, and J. R. Buck. Discrete-Time Signal Processing, 2nd edn. Upper Saddle River: Prentice Hall, 1999.

    Google Scholar 

  23. Peebles, P. Z., Jr. Probability, Random Variables and Random Signal Principles, 4th edn. Singapore: McGraw Hill, 2001.

    Google Scholar 

  24. Rankine, L. J., M. Mesbah, and B. Boashash. IF estimation for multicomponent signals using image processing techniques in the time-frequency domain. Signal Process. 87:1234–1250, 2007.

    Article  Google Scholar 

  25. Rankine, L., N. Stevenson, M. Mesbah, and B. Boashash. A nonstationary model of newborn EEG. IEEE Trans. Biomed. Eng. 54:19–28, 2007.

    Article  Google Scholar 

  26. Reklaitis, G. V., A. Ravindran, and K. M. Ragsdell. Engineering Optimization: Methods and Applications, 2nd edn. Hoboken: John Wiley & Sons, 2006.

    Google Scholar 

  27. Roessgen, M., A. Zoubir, and B. Boashash. Seizure detection of newborn EEG using a model–based approach. IEEE Trans. Biomed. Eng. :673–685, 1998.

    Article  CAS  Google Scholar 

  28. Roessgen, M. A. Analysis and Modelling of EEG Data with Application to Seizure Detection in the Newborn. PhD Dissertation, Brisbane: Queensland University of Technology, 1997.

  29. Scher, M. S., B. L. Jones, D. A. Steppe, D. L. Cork, H. J. Seltman, and D. L. Banks. Functional brain maturation in neonates as measured by EEG-sleep analyses. Clin. Neurophysiol. 114:875–882, 2003.

    Article  PubMed  Google Scholar 

  30. Shampine, L. F. Numerical Solution of Ordinary Differential Equations. New York: Chapman and Hall, 1994.

    Google Scholar 

  31. Srebro, R. The Duffing oscillator: a model for the dynamics of the neuronal groups comprising the transient evoked potential. Electroencephal. Clin. Neurophysiol. 96:561–573, 1995.

    Article  CAS  Google Scholar 

  32. Tahmasbi, R., and S. Rezaei. Change point detection in GARCH models for voice activity detection. IEEE Trans. Audio Speech. 16:1038–1046, 2008.

    Article  Google Scholar 

  33. Tuckwell, H. Introduction to Theoretical Neurobiology, Vol. 2. Cambridge: Cambridge University Press, 1988.

    Google Scholar 

  34. Vetterli, M., P., Marziliano, and T. Blu. Sampling signals with finite rate of innovation. IEEE Trans. Signal Proces. 50:1417–1428, 2002.

    Article  Google Scholar 

  35. Welch, P. D. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacous. AU-15:70–73, 1967.

    Article  Google Scholar 

  36. Zeeman. E. C. Brain modelling. In: Structural Stability, The Theory of Catastrophes, and Applications in the Sciences. Berlin: Springer, 1976, pp. 367–372.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. J. Stevenson.

Additional information

Associate Editor Larry V. McIntire oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevenson, N.J., Mesbah, M., Boylan, G.B. et al. A Nonlinear Model of Newborn EEG with Nonstationary Inputs. Ann Biomed Eng 38, 3010–3021 (2010). https://doi.org/10.1007/s10439-010-0041-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0041-3

Keywords

Navigation